Optimal Multiparameter Metrology: The Quantum Compass Solution
We study optimal quantum sensing of multiple physical parameters using repeated measurements. In this scenario, the Fisher information framework sets the fundamental limits on sensing performance, yet the optimal states and corresponding measurements that attain these limits remain to be discovered....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Vasilyev, Denis V Athreya Shankar Kaubruegger, Raphael Zoller, Peter |
description | We study optimal quantum sensing of multiple physical parameters using repeated measurements. In this scenario, the Fisher information framework sets the fundamental limits on sensing performance, yet the optimal states and corresponding measurements that attain these limits remain to be discovered. To address this, we extend the Fisher information approach with a second optimality requirement for a sensor to provide unambiguous estimation of unknown parameters. We propose a systematic method integrating Fisher information and Bayesian approaches to quantum metrology to identify the combination of input states and measurements that satisfies both optimality criteria. Specifically, we frame the optimal sensing problem as an optimization of an asymptotic Bayesian cost function that can be efficiently solved numerically and, in many cases, analytically. We refer to the resulting optimal sensor as a `quantum compass' solution, which serves as a direct multiparameter counterpart to the Greenberger-Horne-Zeilinger state-based interferometer, renowned for achieving the Heisenberg limit in single-parameter metrology. We provide exact quantum compass solutions for paradigmatic multiparameter problem of sensing two and three parameters using an SU(2) sensor. Our metrological cost function opens avenues for quantum variational techniques to design low-depth quantum circuits approaching the optimal sensing performance in the many-repetition scenario. We demonstrate this by constructing simple quantum circuits that achieve the Heisenberg limit for vector field and 3D rotations estimation using a limited set of gates available on a trapped-ion platform. Our work introduces and optimizes sensors for a practical notion of optimality, keeping in mind the ultimate goal of quantum sensors to precisely estimate unknown parameters. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3044059784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044059784</sourcerecordid><originalsourceid>FETCH-proquest_journals_30440597843</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScCzE_tjq4FMWliNi9ZIiakvTG5Gbw7XXwAZzO8J0ZKbgQm6qRnC9ImdLIGOPbmislCnK4BLReO9plhzboqL1BE2lnMIKDx3tP-6eh16wnzJ624INOid7AZbQwrcj8rl0y5a9Lsj4d-_ZchQivbBIOI-Q4fWkQTEqmdnUjxX_XB-wmOLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044059784</pqid></control><display><type>article</type><title>Optimal Multiparameter Metrology: The Quantum Compass Solution</title><source>Free E- Journals</source><creator>Vasilyev, Denis V ; Athreya Shankar ; Kaubruegger, Raphael ; Zoller, Peter</creator><creatorcontrib>Vasilyev, Denis V ; Athreya Shankar ; Kaubruegger, Raphael ; Zoller, Peter</creatorcontrib><description>We study optimal quantum sensing of multiple physical parameters using repeated measurements. In this scenario, the Fisher information framework sets the fundamental limits on sensing performance, yet the optimal states and corresponding measurements that attain these limits remain to be discovered. To address this, we extend the Fisher information approach with a second optimality requirement for a sensor to provide unambiguous estimation of unknown parameters. We propose a systematic method integrating Fisher information and Bayesian approaches to quantum metrology to identify the combination of input states and measurements that satisfies both optimality criteria. Specifically, we frame the optimal sensing problem as an optimization of an asymptotic Bayesian cost function that can be efficiently solved numerically and, in many cases, analytically. We refer to the resulting optimal sensor as a `quantum compass' solution, which serves as a direct multiparameter counterpart to the Greenberger-Horne-Zeilinger state-based interferometer, renowned for achieving the Heisenberg limit in single-parameter metrology. We provide exact quantum compass solutions for paradigmatic multiparameter problem of sensing two and three parameters using an SU(2) sensor. Our metrological cost function opens avenues for quantum variational techniques to design low-depth quantum circuits approaching the optimal sensing performance in the many-repetition scenario. We demonstrate this by constructing simple quantum circuits that achieve the Heisenberg limit for vector field and 3D rotations estimation using a limited set of gates available on a trapped-ion platform. Our work introduces and optimizes sensors for a practical notion of optimality, keeping in mind the ultimate goal of quantum sensors to precisely estimate unknown parameters.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Circuit design ; Cost function ; Entangled states ; Fields (mathematics) ; Fisher information ; Heisenberg theory ; Metrology ; Optimality criteria ; Optimization ; Parameters ; Physical properties ; Quantum sensors ; Sensors</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Vasilyev, Denis V</creatorcontrib><creatorcontrib>Athreya Shankar</creatorcontrib><creatorcontrib>Kaubruegger, Raphael</creatorcontrib><creatorcontrib>Zoller, Peter</creatorcontrib><title>Optimal Multiparameter Metrology: The Quantum Compass Solution</title><title>arXiv.org</title><description>We study optimal quantum sensing of multiple physical parameters using repeated measurements. In this scenario, the Fisher information framework sets the fundamental limits on sensing performance, yet the optimal states and corresponding measurements that attain these limits remain to be discovered. To address this, we extend the Fisher information approach with a second optimality requirement for a sensor to provide unambiguous estimation of unknown parameters. We propose a systematic method integrating Fisher information and Bayesian approaches to quantum metrology to identify the combination of input states and measurements that satisfies both optimality criteria. Specifically, we frame the optimal sensing problem as an optimization of an asymptotic Bayesian cost function that can be efficiently solved numerically and, in many cases, analytically. We refer to the resulting optimal sensor as a `quantum compass' solution, which serves as a direct multiparameter counterpart to the Greenberger-Horne-Zeilinger state-based interferometer, renowned for achieving the Heisenberg limit in single-parameter metrology. We provide exact quantum compass solutions for paradigmatic multiparameter problem of sensing two and three parameters using an SU(2) sensor. Our metrological cost function opens avenues for quantum variational techniques to design low-depth quantum circuits approaching the optimal sensing performance in the many-repetition scenario. We demonstrate this by constructing simple quantum circuits that achieve the Heisenberg limit for vector field and 3D rotations estimation using a limited set of gates available on a trapped-ion platform. Our work introduces and optimizes sensors for a practical notion of optimality, keeping in mind the ultimate goal of quantum sensors to precisely estimate unknown parameters.</description><subject>Bayesian analysis</subject><subject>Circuit design</subject><subject>Cost function</subject><subject>Entangled states</subject><subject>Fields (mathematics)</subject><subject>Fisher information</subject><subject>Heisenberg theory</subject><subject>Metrology</subject><subject>Optimality criteria</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Physical properties</subject><subject>Quantum sensors</subject><subject>Sensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScCzE_tjq4FMWliNi9ZIiakvTG5Gbw7XXwAZzO8J0ZKbgQm6qRnC9ImdLIGOPbmislCnK4BLReO9plhzboqL1BE2lnMIKDx3tP-6eh16wnzJ624INOid7AZbQwrcj8rl0y5a9Lsj4d-_ZchQivbBIOI-Q4fWkQTEqmdnUjxX_XB-wmOLg</recordid><startdate>20240422</startdate><enddate>20240422</enddate><creator>Vasilyev, Denis V</creator><creator>Athreya Shankar</creator><creator>Kaubruegger, Raphael</creator><creator>Zoller, Peter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240422</creationdate><title>Optimal Multiparameter Metrology: The Quantum Compass Solution</title><author>Vasilyev, Denis V ; Athreya Shankar ; Kaubruegger, Raphael ; Zoller, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30440597843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian analysis</topic><topic>Circuit design</topic><topic>Cost function</topic><topic>Entangled states</topic><topic>Fields (mathematics)</topic><topic>Fisher information</topic><topic>Heisenberg theory</topic><topic>Metrology</topic><topic>Optimality criteria</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Physical properties</topic><topic>Quantum sensors</topic><topic>Sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Vasilyev, Denis V</creatorcontrib><creatorcontrib>Athreya Shankar</creatorcontrib><creatorcontrib>Kaubruegger, Raphael</creatorcontrib><creatorcontrib>Zoller, Peter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasilyev, Denis V</au><au>Athreya Shankar</au><au>Kaubruegger, Raphael</au><au>Zoller, Peter</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimal Multiparameter Metrology: The Quantum Compass Solution</atitle><jtitle>arXiv.org</jtitle><date>2024-04-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study optimal quantum sensing of multiple physical parameters using repeated measurements. In this scenario, the Fisher information framework sets the fundamental limits on sensing performance, yet the optimal states and corresponding measurements that attain these limits remain to be discovered. To address this, we extend the Fisher information approach with a second optimality requirement for a sensor to provide unambiguous estimation of unknown parameters. We propose a systematic method integrating Fisher information and Bayesian approaches to quantum metrology to identify the combination of input states and measurements that satisfies both optimality criteria. Specifically, we frame the optimal sensing problem as an optimization of an asymptotic Bayesian cost function that can be efficiently solved numerically and, in many cases, analytically. We refer to the resulting optimal sensor as a `quantum compass' solution, which serves as a direct multiparameter counterpart to the Greenberger-Horne-Zeilinger state-based interferometer, renowned for achieving the Heisenberg limit in single-parameter metrology. We provide exact quantum compass solutions for paradigmatic multiparameter problem of sensing two and three parameters using an SU(2) sensor. Our metrological cost function opens avenues for quantum variational techniques to design low-depth quantum circuits approaching the optimal sensing performance in the many-repetition scenario. We demonstrate this by constructing simple quantum circuits that achieve the Heisenberg limit for vector field and 3D rotations estimation using a limited set of gates available on a trapped-ion platform. Our work introduces and optimizes sensors for a practical notion of optimality, keeping in mind the ultimate goal of quantum sensors to precisely estimate unknown parameters.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3044059784 |
source | Free E- Journals |
subjects | Bayesian analysis Circuit design Cost function Entangled states Fields (mathematics) Fisher information Heisenberg theory Metrology Optimality criteria Optimization Parameters Physical properties Quantum sensors Sensors |
title | Optimal Multiparameter Metrology: The Quantum Compass Solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimal%20Multiparameter%20Metrology:%20The%20Quantum%20Compass%20Solution&rft.jtitle=arXiv.org&rft.au=Vasilyev,%20Denis%20V&rft.date=2024-04-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3044059784%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044059784&rft_id=info:pmid/&rfr_iscdi=true |