On Solutions of the One-Dimensional Goldshtik Problem

A one-dimensional analog of the Goldshtik mathematical model for separated flows in an incompressible fluid is considered. The model is a boundary value problem for a second-order ordinary differential equation with discontinuous right-hand side. Some properties of the solutions of the problem, as w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2024-02, Vol.115 (1-2), p.12-20
Hauptverfasser: Baskov, O. V., Potapov, D. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A one-dimensional analog of the Goldshtik mathematical model for separated flows in an incompressible fluid is considered. The model is a boundary value problem for a second-order ordinary differential equation with discontinuous right-hand side. Some properties of the solutions of the problem, as well as the properties of the energy functional for different values of vorticity, are established. An approximate solution of the boundary value problem under study is found using the shooting method.
ISSN:0001-4346
1067-9073
1573-8876
DOI:10.1134/S0001434624010024