Controlling the Coke Formation in Dehydrogenation of Propane by Adding Nickel to Supported Gallium Oxide
Atomic layer deposition was applied on mesoporous silica to synthesize a highly dispersed gallium oxide catalyst. This system was used as starting material to investigate different loadings of nickel in the dehydrogenation of propane under industrially relevant, Oleflex‐like conditions. The formatio...
Gespeichert in:
Veröffentlicht in: | ChemCatChem 2024-04, Vol.16 (8), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | |
container_title | ChemCatChem |
container_volume | 16 |
creator | Baumgarten, Robert Ingale, Piyush Ebert, Fabian Mazheika, Aliaksei Gioria, Esteban Trapp, Katharina Profita, Kevin D. Naumann d'Alnoncourt, Raoul Driess, Matthias Rosowski, Frank |
description | Atomic layer deposition was applied on mesoporous silica to synthesize a highly dispersed gallium oxide catalyst. This system was used as starting material to investigate different loadings of nickel in the dehydrogenation of propane under industrially relevant, Oleflex‐like conditions. The formation of NiGa alloys was confirmed by X‐ray diffraction analysis and electron microscopy. Surprisingly, the nanoalloys enhanced the selectivity towards C3H6 while decreasing the tendency for coking. Herein, in situ thermogravimetry, and measured mass fractions of carbon revealed that the coking rate was reduced by over 50 % compared to the pristine gallium oxide. Generally, the increased selectivity can be explained by the partial hydrogenation and reduction of the gallium oxide surface. The optimum temperature for the removal of deposited carbon was evaluated by a temperature programmed oxidation. Finally, the best‐performing Ni−GaOx catalyst was employed in a cycled experiment with periodic reaction and regeneration tests. After regeneration, the selected Ni−GaOx catalyst provided a higher yield of propylene compared to the unmodified gallium oxide.
A supported gallium oxide catalyst, synthesized by atomic layer deposition, was modified by the addition of nickel, and used in the dehydrogenation of propane. Resulting NiGa nanoparticles helped to reduce the coke formation on gallium oxide under industrially relevant conditions. Finally, the catalyst system could be regenerated by an oxidative treatment. |
doi_str_mv | 10.1002/cctc.202301261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3043627601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3043627601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-c63cc25899a2bb889c98c5e1d5f1e19c388b00f320e3709d0cb4cc7711b406c23</originalsourceid><addsrcrecordid>eNqFkM1PwzAMxSMEEmNw5RyJc4eTrB85TgUG0sSQGOeodd2tW9eUtBP0v6dT0ThysmW937P9GLsVMBEA8h6xxYkEqUDIQJyxkYiC0FOR1uenPoJLdtU0W4BAq9AfsU1sq9bZsiyqNW83xGO7I_5k3T5pC1vxouIPtOkyZ9dUDSOb8zdn66QinnZ8lmVH9LXAHZW8tfz9UNfWtZTxedLbHvZ8-V1kdM0u8qRs6Oa3jtnH0-MqfvYWy_lLPFt4qPxQeBgoROn3RycyTaNIo47QJ5H5uSChsX8hBciVBFIh6AwwnSKGoRDpFAKUaszuBt_a2c8DNa3Z2oOr-pVGwVQFMgxA9KrJoEJnm8ZRbmpX7BPXGQHmmKY5pmlOafaAHoCvoqTuH7WJ41X8x_4ABlN5AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043627601</pqid></control><display><type>article</type><title>Controlling the Coke Formation in Dehydrogenation of Propane by Adding Nickel to Supported Gallium Oxide</title><source>Wiley Online Library All Journals</source><creator>Baumgarten, Robert ; Ingale, Piyush ; Ebert, Fabian ; Mazheika, Aliaksei ; Gioria, Esteban ; Trapp, Katharina ; Profita, Kevin D. ; Naumann d'Alnoncourt, Raoul ; Driess, Matthias ; Rosowski, Frank</creator><creatorcontrib>Baumgarten, Robert ; Ingale, Piyush ; Ebert, Fabian ; Mazheika, Aliaksei ; Gioria, Esteban ; Trapp, Katharina ; Profita, Kevin D. ; Naumann d'Alnoncourt, Raoul ; Driess, Matthias ; Rosowski, Frank</creatorcontrib><description>Atomic layer deposition was applied on mesoporous silica to synthesize a highly dispersed gallium oxide catalyst. This system was used as starting material to investigate different loadings of nickel in the dehydrogenation of propane under industrially relevant, Oleflex‐like conditions. The formation of NiGa alloys was confirmed by X‐ray diffraction analysis and electron microscopy. Surprisingly, the nanoalloys enhanced the selectivity towards C3H6 while decreasing the tendency for coking. Herein, in situ thermogravimetry, and measured mass fractions of carbon revealed that the coking rate was reduced by over 50 % compared to the pristine gallium oxide. Generally, the increased selectivity can be explained by the partial hydrogenation and reduction of the gallium oxide surface. The optimum temperature for the removal of deposited carbon was evaluated by a temperature programmed oxidation. Finally, the best‐performing Ni−GaOx catalyst was employed in a cycled experiment with periodic reaction and regeneration tests. After regeneration, the selected Ni−GaOx catalyst provided a higher yield of propylene compared to the unmodified gallium oxide.
A supported gallium oxide catalyst, synthesized by atomic layer deposition, was modified by the addition of nickel, and used in the dehydrogenation of propane. Resulting NiGa nanoparticles helped to reduce the coke formation on gallium oxide under industrially relevant conditions. Finally, the catalyst system could be regenerated by an oxidative treatment.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202301261</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>alloy ; Atomic layer epitaxy ; Carbon ; Catalysts ; coke formation ; Coking ; Dehydrogenation ; gallium oxide ; Gallium oxides ; Nanoalloys ; Nickel ; Oxidation ; Propane ; propane dehydrogenation ; Propylene ; Regeneration ; Thermogravimetry</subject><ispartof>ChemCatChem, 2024-04, Vol.16 (8), p.n/a</ispartof><rights>2023 The Authors. ChemCatChem published by Wiley-VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-c63cc25899a2bb889c98c5e1d5f1e19c388b00f320e3709d0cb4cc7711b406c23</citedby><cites>FETCH-LOGICAL-c3571-c63cc25899a2bb889c98c5e1d5f1e19c388b00f320e3709d0cb4cc7711b406c23</cites><orcidid>0000-0002-9873-4103 ; 0000-0003-1718-9797 ; 0000-0002-3535-4234 ; 0000-0001-6918-5734 ; 0000-0002-9946-4619 ; 0000-0002-4705-1804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202301261$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202301261$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Baumgarten, Robert</creatorcontrib><creatorcontrib>Ingale, Piyush</creatorcontrib><creatorcontrib>Ebert, Fabian</creatorcontrib><creatorcontrib>Mazheika, Aliaksei</creatorcontrib><creatorcontrib>Gioria, Esteban</creatorcontrib><creatorcontrib>Trapp, Katharina</creatorcontrib><creatorcontrib>Profita, Kevin D.</creatorcontrib><creatorcontrib>Naumann d'Alnoncourt, Raoul</creatorcontrib><creatorcontrib>Driess, Matthias</creatorcontrib><creatorcontrib>Rosowski, Frank</creatorcontrib><title>Controlling the Coke Formation in Dehydrogenation of Propane by Adding Nickel to Supported Gallium Oxide</title><title>ChemCatChem</title><description>Atomic layer deposition was applied on mesoporous silica to synthesize a highly dispersed gallium oxide catalyst. This system was used as starting material to investigate different loadings of nickel in the dehydrogenation of propane under industrially relevant, Oleflex‐like conditions. The formation of NiGa alloys was confirmed by X‐ray diffraction analysis and electron microscopy. Surprisingly, the nanoalloys enhanced the selectivity towards C3H6 while decreasing the tendency for coking. Herein, in situ thermogravimetry, and measured mass fractions of carbon revealed that the coking rate was reduced by over 50 % compared to the pristine gallium oxide. Generally, the increased selectivity can be explained by the partial hydrogenation and reduction of the gallium oxide surface. The optimum temperature for the removal of deposited carbon was evaluated by a temperature programmed oxidation. Finally, the best‐performing Ni−GaOx catalyst was employed in a cycled experiment with periodic reaction and regeneration tests. After regeneration, the selected Ni−GaOx catalyst provided a higher yield of propylene compared to the unmodified gallium oxide.
A supported gallium oxide catalyst, synthesized by atomic layer deposition, was modified by the addition of nickel, and used in the dehydrogenation of propane. Resulting NiGa nanoparticles helped to reduce the coke formation on gallium oxide under industrially relevant conditions. Finally, the catalyst system could be regenerated by an oxidative treatment.</description><subject>alloy</subject><subject>Atomic layer epitaxy</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>coke formation</subject><subject>Coking</subject><subject>Dehydrogenation</subject><subject>gallium oxide</subject><subject>Gallium oxides</subject><subject>Nanoalloys</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Propane</subject><subject>propane dehydrogenation</subject><subject>Propylene</subject><subject>Regeneration</subject><subject>Thermogravimetry</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1PwzAMxSMEEmNw5RyJc4eTrB85TgUG0sSQGOeodd2tW9eUtBP0v6dT0ThysmW937P9GLsVMBEA8h6xxYkEqUDIQJyxkYiC0FOR1uenPoJLdtU0W4BAq9AfsU1sq9bZsiyqNW83xGO7I_5k3T5pC1vxouIPtOkyZ9dUDSOb8zdn66QinnZ8lmVH9LXAHZW8tfz9UNfWtZTxedLbHvZ8-V1kdM0u8qRs6Oa3jtnH0-MqfvYWy_lLPFt4qPxQeBgoROn3RycyTaNIo47QJ5H5uSChsX8hBciVBFIh6AwwnSKGoRDpFAKUaszuBt_a2c8DNa3Z2oOr-pVGwVQFMgxA9KrJoEJnm8ZRbmpX7BPXGQHmmKY5pmlOafaAHoCvoqTuH7WJ41X8x_4ABlN5AA</recordid><startdate>20240422</startdate><enddate>20240422</enddate><creator>Baumgarten, Robert</creator><creator>Ingale, Piyush</creator><creator>Ebert, Fabian</creator><creator>Mazheika, Aliaksei</creator><creator>Gioria, Esteban</creator><creator>Trapp, Katharina</creator><creator>Profita, Kevin D.</creator><creator>Naumann d'Alnoncourt, Raoul</creator><creator>Driess, Matthias</creator><creator>Rosowski, Frank</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9873-4103</orcidid><orcidid>https://orcid.org/0000-0003-1718-9797</orcidid><orcidid>https://orcid.org/0000-0002-3535-4234</orcidid><orcidid>https://orcid.org/0000-0001-6918-5734</orcidid><orcidid>https://orcid.org/0000-0002-9946-4619</orcidid><orcidid>https://orcid.org/0000-0002-4705-1804</orcidid></search><sort><creationdate>20240422</creationdate><title>Controlling the Coke Formation in Dehydrogenation of Propane by Adding Nickel to Supported Gallium Oxide</title><author>Baumgarten, Robert ; Ingale, Piyush ; Ebert, Fabian ; Mazheika, Aliaksei ; Gioria, Esteban ; Trapp, Katharina ; Profita, Kevin D. ; Naumann d'Alnoncourt, Raoul ; Driess, Matthias ; Rosowski, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-c63cc25899a2bb889c98c5e1d5f1e19c388b00f320e3709d0cb4cc7711b406c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alloy</topic><topic>Atomic layer epitaxy</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>coke formation</topic><topic>Coking</topic><topic>Dehydrogenation</topic><topic>gallium oxide</topic><topic>Gallium oxides</topic><topic>Nanoalloys</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Propane</topic><topic>propane dehydrogenation</topic><topic>Propylene</topic><topic>Regeneration</topic><topic>Thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baumgarten, Robert</creatorcontrib><creatorcontrib>Ingale, Piyush</creatorcontrib><creatorcontrib>Ebert, Fabian</creatorcontrib><creatorcontrib>Mazheika, Aliaksei</creatorcontrib><creatorcontrib>Gioria, Esteban</creatorcontrib><creatorcontrib>Trapp, Katharina</creatorcontrib><creatorcontrib>Profita, Kevin D.</creatorcontrib><creatorcontrib>Naumann d'Alnoncourt, Raoul</creatorcontrib><creatorcontrib>Driess, Matthias</creatorcontrib><creatorcontrib>Rosowski, Frank</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baumgarten, Robert</au><au>Ingale, Piyush</au><au>Ebert, Fabian</au><au>Mazheika, Aliaksei</au><au>Gioria, Esteban</au><au>Trapp, Katharina</au><au>Profita, Kevin D.</au><au>Naumann d'Alnoncourt, Raoul</au><au>Driess, Matthias</au><au>Rosowski, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the Coke Formation in Dehydrogenation of Propane by Adding Nickel to Supported Gallium Oxide</atitle><jtitle>ChemCatChem</jtitle><date>2024-04-22</date><risdate>2024</risdate><volume>16</volume><issue>8</issue><epage>n/a</epage><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Atomic layer deposition was applied on mesoporous silica to synthesize a highly dispersed gallium oxide catalyst. This system was used as starting material to investigate different loadings of nickel in the dehydrogenation of propane under industrially relevant, Oleflex‐like conditions. The formation of NiGa alloys was confirmed by X‐ray diffraction analysis and electron microscopy. Surprisingly, the nanoalloys enhanced the selectivity towards C3H6 while decreasing the tendency for coking. Herein, in situ thermogravimetry, and measured mass fractions of carbon revealed that the coking rate was reduced by over 50 % compared to the pristine gallium oxide. Generally, the increased selectivity can be explained by the partial hydrogenation and reduction of the gallium oxide surface. The optimum temperature for the removal of deposited carbon was evaluated by a temperature programmed oxidation. Finally, the best‐performing Ni−GaOx catalyst was employed in a cycled experiment with periodic reaction and regeneration tests. After regeneration, the selected Ni−GaOx catalyst provided a higher yield of propylene compared to the unmodified gallium oxide.
A supported gallium oxide catalyst, synthesized by atomic layer deposition, was modified by the addition of nickel, and used in the dehydrogenation of propane. Resulting NiGa nanoparticles helped to reduce the coke formation on gallium oxide under industrially relevant conditions. Finally, the catalyst system could be regenerated by an oxidative treatment.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202301261</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9873-4103</orcidid><orcidid>https://orcid.org/0000-0003-1718-9797</orcidid><orcidid>https://orcid.org/0000-0002-3535-4234</orcidid><orcidid>https://orcid.org/0000-0001-6918-5734</orcidid><orcidid>https://orcid.org/0000-0002-9946-4619</orcidid><orcidid>https://orcid.org/0000-0002-4705-1804</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-3880 |
ispartof | ChemCatChem, 2024-04, Vol.16 (8), p.n/a |
issn | 1867-3880 1867-3899 |
language | eng |
recordid | cdi_proquest_journals_3043627601 |
source | Wiley Online Library All Journals |
subjects | alloy Atomic layer epitaxy Carbon Catalysts coke formation Coking Dehydrogenation gallium oxide Gallium oxides Nanoalloys Nickel Oxidation Propane propane dehydrogenation Propylene Regeneration Thermogravimetry |
title | Controlling the Coke Formation in Dehydrogenation of Propane by Adding Nickel to Supported Gallium Oxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20Coke%20Formation%20in%20Dehydrogenation%20of%20Propane%20by%20Adding%20Nickel%20to%20Supported%20Gallium%20Oxide&rft.jtitle=ChemCatChem&rft.au=Baumgarten,%20Robert&rft.date=2024-04-22&rft.volume=16&rft.issue=8&rft.epage=n/a&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202301261&rft_dat=%3Cproquest_cross%3E3043627601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3043627601&rft_id=info:pmid/&rfr_iscdi=true |