Controlling the Coke Formation in Dehydrogenation of Propane by Adding Nickel to Supported Gallium Oxide

Atomic layer deposition was applied on mesoporous silica to synthesize a highly dispersed gallium oxide catalyst. This system was used as starting material to investigate different loadings of nickel in the dehydrogenation of propane under industrially relevant, Oleflex‐like conditions. The formatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2024-04, Vol.16 (8), p.n/a
Hauptverfasser: Baumgarten, Robert, Ingale, Piyush, Ebert, Fabian, Mazheika, Aliaksei, Gioria, Esteban, Trapp, Katharina, Profita, Kevin D., Naumann d'Alnoncourt, Raoul, Driess, Matthias, Rosowski, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title ChemCatChem
container_volume 16
creator Baumgarten, Robert
Ingale, Piyush
Ebert, Fabian
Mazheika, Aliaksei
Gioria, Esteban
Trapp, Katharina
Profita, Kevin D.
Naumann d'Alnoncourt, Raoul
Driess, Matthias
Rosowski, Frank
description Atomic layer deposition was applied on mesoporous silica to synthesize a highly dispersed gallium oxide catalyst. This system was used as starting material to investigate different loadings of nickel in the dehydrogenation of propane under industrially relevant, Oleflex‐like conditions. The formation of NiGa alloys was confirmed by X‐ray diffraction analysis and electron microscopy. Surprisingly, the nanoalloys enhanced the selectivity towards C3H6 while decreasing the tendency for coking. Herein, in situ thermogravimetry, and measured mass fractions of carbon revealed that the coking rate was reduced by over 50 % compared to the pristine gallium oxide. Generally, the increased selectivity can be explained by the partial hydrogenation and reduction of the gallium oxide surface. The optimum temperature for the removal of deposited carbon was evaluated by a temperature programmed oxidation. Finally, the best‐performing Ni−GaOx catalyst was employed in a cycled experiment with periodic reaction and regeneration tests. After regeneration, the selected Ni−GaOx catalyst provided a higher yield of propylene compared to the unmodified gallium oxide. A supported gallium oxide catalyst, synthesized by atomic layer deposition, was modified by the addition of nickel, and used in the dehydrogenation of propane. Resulting NiGa nanoparticles helped to reduce the coke formation on gallium oxide under industrially relevant conditions. Finally, the catalyst system could be regenerated by an oxidative treatment.
doi_str_mv 10.1002/cctc.202301261
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3043627601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3043627601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-c63cc25899a2bb889c98c5e1d5f1e19c388b00f320e3709d0cb4cc7711b406c23</originalsourceid><addsrcrecordid>eNqFkM1PwzAMxSMEEmNw5RyJc4eTrB85TgUG0sSQGOeodd2tW9eUtBP0v6dT0ThysmW937P9GLsVMBEA8h6xxYkEqUDIQJyxkYiC0FOR1uenPoJLdtU0W4BAq9AfsU1sq9bZsiyqNW83xGO7I_5k3T5pC1vxouIPtOkyZ9dUDSOb8zdn66QinnZ8lmVH9LXAHZW8tfz9UNfWtZTxedLbHvZ8-V1kdM0u8qRs6Oa3jtnH0-MqfvYWy_lLPFt4qPxQeBgoROn3RycyTaNIo47QJ5H5uSChsX8hBciVBFIh6AwwnSKGoRDpFAKUaszuBt_a2c8DNa3Z2oOr-pVGwVQFMgxA9KrJoEJnm8ZRbmpX7BPXGQHmmKY5pmlOafaAHoCvoqTuH7WJ41X8x_4ABlN5AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043627601</pqid></control><display><type>article</type><title>Controlling the Coke Formation in Dehydrogenation of Propane by Adding Nickel to Supported Gallium Oxide</title><source>Wiley Online Library All Journals</source><creator>Baumgarten, Robert ; Ingale, Piyush ; Ebert, Fabian ; Mazheika, Aliaksei ; Gioria, Esteban ; Trapp, Katharina ; Profita, Kevin D. ; Naumann d'Alnoncourt, Raoul ; Driess, Matthias ; Rosowski, Frank</creator><creatorcontrib>Baumgarten, Robert ; Ingale, Piyush ; Ebert, Fabian ; Mazheika, Aliaksei ; Gioria, Esteban ; Trapp, Katharina ; Profita, Kevin D. ; Naumann d'Alnoncourt, Raoul ; Driess, Matthias ; Rosowski, Frank</creatorcontrib><description>Atomic layer deposition was applied on mesoporous silica to synthesize a highly dispersed gallium oxide catalyst. This system was used as starting material to investigate different loadings of nickel in the dehydrogenation of propane under industrially relevant, Oleflex‐like conditions. The formation of NiGa alloys was confirmed by X‐ray diffraction analysis and electron microscopy. Surprisingly, the nanoalloys enhanced the selectivity towards C3H6 while decreasing the tendency for coking. Herein, in situ thermogravimetry, and measured mass fractions of carbon revealed that the coking rate was reduced by over 50 % compared to the pristine gallium oxide. Generally, the increased selectivity can be explained by the partial hydrogenation and reduction of the gallium oxide surface. The optimum temperature for the removal of deposited carbon was evaluated by a temperature programmed oxidation. Finally, the best‐performing Ni−GaOx catalyst was employed in a cycled experiment with periodic reaction and regeneration tests. After regeneration, the selected Ni−GaOx catalyst provided a higher yield of propylene compared to the unmodified gallium oxide. A supported gallium oxide catalyst, synthesized by atomic layer deposition, was modified by the addition of nickel, and used in the dehydrogenation of propane. Resulting NiGa nanoparticles helped to reduce the coke formation on gallium oxide under industrially relevant conditions. Finally, the catalyst system could be regenerated by an oxidative treatment.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202301261</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>alloy ; Atomic layer epitaxy ; Carbon ; Catalysts ; coke formation ; Coking ; Dehydrogenation ; gallium oxide ; Gallium oxides ; Nanoalloys ; Nickel ; Oxidation ; Propane ; propane dehydrogenation ; Propylene ; Regeneration ; Thermogravimetry</subject><ispartof>ChemCatChem, 2024-04, Vol.16 (8), p.n/a</ispartof><rights>2023 The Authors. ChemCatChem published by Wiley-VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-c63cc25899a2bb889c98c5e1d5f1e19c388b00f320e3709d0cb4cc7711b406c23</citedby><cites>FETCH-LOGICAL-c3571-c63cc25899a2bb889c98c5e1d5f1e19c388b00f320e3709d0cb4cc7711b406c23</cites><orcidid>0000-0002-9873-4103 ; 0000-0003-1718-9797 ; 0000-0002-3535-4234 ; 0000-0001-6918-5734 ; 0000-0002-9946-4619 ; 0000-0002-4705-1804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202301261$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202301261$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Baumgarten, Robert</creatorcontrib><creatorcontrib>Ingale, Piyush</creatorcontrib><creatorcontrib>Ebert, Fabian</creatorcontrib><creatorcontrib>Mazheika, Aliaksei</creatorcontrib><creatorcontrib>Gioria, Esteban</creatorcontrib><creatorcontrib>Trapp, Katharina</creatorcontrib><creatorcontrib>Profita, Kevin D.</creatorcontrib><creatorcontrib>Naumann d'Alnoncourt, Raoul</creatorcontrib><creatorcontrib>Driess, Matthias</creatorcontrib><creatorcontrib>Rosowski, Frank</creatorcontrib><title>Controlling the Coke Formation in Dehydrogenation of Propane by Adding Nickel to Supported Gallium Oxide</title><title>ChemCatChem</title><description>Atomic layer deposition was applied on mesoporous silica to synthesize a highly dispersed gallium oxide catalyst. This system was used as starting material to investigate different loadings of nickel in the dehydrogenation of propane under industrially relevant, Oleflex‐like conditions. The formation of NiGa alloys was confirmed by X‐ray diffraction analysis and electron microscopy. Surprisingly, the nanoalloys enhanced the selectivity towards C3H6 while decreasing the tendency for coking. Herein, in situ thermogravimetry, and measured mass fractions of carbon revealed that the coking rate was reduced by over 50 % compared to the pristine gallium oxide. Generally, the increased selectivity can be explained by the partial hydrogenation and reduction of the gallium oxide surface. The optimum temperature for the removal of deposited carbon was evaluated by a temperature programmed oxidation. Finally, the best‐performing Ni−GaOx catalyst was employed in a cycled experiment with periodic reaction and regeneration tests. After regeneration, the selected Ni−GaOx catalyst provided a higher yield of propylene compared to the unmodified gallium oxide. A supported gallium oxide catalyst, synthesized by atomic layer deposition, was modified by the addition of nickel, and used in the dehydrogenation of propane. Resulting NiGa nanoparticles helped to reduce the coke formation on gallium oxide under industrially relevant conditions. Finally, the catalyst system could be regenerated by an oxidative treatment.</description><subject>alloy</subject><subject>Atomic layer epitaxy</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>coke formation</subject><subject>Coking</subject><subject>Dehydrogenation</subject><subject>gallium oxide</subject><subject>Gallium oxides</subject><subject>Nanoalloys</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Propane</subject><subject>propane dehydrogenation</subject><subject>Propylene</subject><subject>Regeneration</subject><subject>Thermogravimetry</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1PwzAMxSMEEmNw5RyJc4eTrB85TgUG0sSQGOeodd2tW9eUtBP0v6dT0ThysmW937P9GLsVMBEA8h6xxYkEqUDIQJyxkYiC0FOR1uenPoJLdtU0W4BAq9AfsU1sq9bZsiyqNW83xGO7I_5k3T5pC1vxouIPtOkyZ9dUDSOb8zdn66QinnZ8lmVH9LXAHZW8tfz9UNfWtZTxedLbHvZ8-V1kdM0u8qRs6Oa3jtnH0-MqfvYWy_lLPFt4qPxQeBgoROn3RycyTaNIo47QJ5H5uSChsX8hBciVBFIh6AwwnSKGoRDpFAKUaszuBt_a2c8DNa3Z2oOr-pVGwVQFMgxA9KrJoEJnm8ZRbmpX7BPXGQHmmKY5pmlOafaAHoCvoqTuH7WJ41X8x_4ABlN5AA</recordid><startdate>20240422</startdate><enddate>20240422</enddate><creator>Baumgarten, Robert</creator><creator>Ingale, Piyush</creator><creator>Ebert, Fabian</creator><creator>Mazheika, Aliaksei</creator><creator>Gioria, Esteban</creator><creator>Trapp, Katharina</creator><creator>Profita, Kevin D.</creator><creator>Naumann d'Alnoncourt, Raoul</creator><creator>Driess, Matthias</creator><creator>Rosowski, Frank</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9873-4103</orcidid><orcidid>https://orcid.org/0000-0003-1718-9797</orcidid><orcidid>https://orcid.org/0000-0002-3535-4234</orcidid><orcidid>https://orcid.org/0000-0001-6918-5734</orcidid><orcidid>https://orcid.org/0000-0002-9946-4619</orcidid><orcidid>https://orcid.org/0000-0002-4705-1804</orcidid></search><sort><creationdate>20240422</creationdate><title>Controlling the Coke Formation in Dehydrogenation of Propane by Adding Nickel to Supported Gallium Oxide</title><author>Baumgarten, Robert ; Ingale, Piyush ; Ebert, Fabian ; Mazheika, Aliaksei ; Gioria, Esteban ; Trapp, Katharina ; Profita, Kevin D. ; Naumann d'Alnoncourt, Raoul ; Driess, Matthias ; Rosowski, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-c63cc25899a2bb889c98c5e1d5f1e19c388b00f320e3709d0cb4cc7711b406c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alloy</topic><topic>Atomic layer epitaxy</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>coke formation</topic><topic>Coking</topic><topic>Dehydrogenation</topic><topic>gallium oxide</topic><topic>Gallium oxides</topic><topic>Nanoalloys</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Propane</topic><topic>propane dehydrogenation</topic><topic>Propylene</topic><topic>Regeneration</topic><topic>Thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baumgarten, Robert</creatorcontrib><creatorcontrib>Ingale, Piyush</creatorcontrib><creatorcontrib>Ebert, Fabian</creatorcontrib><creatorcontrib>Mazheika, Aliaksei</creatorcontrib><creatorcontrib>Gioria, Esteban</creatorcontrib><creatorcontrib>Trapp, Katharina</creatorcontrib><creatorcontrib>Profita, Kevin D.</creatorcontrib><creatorcontrib>Naumann d'Alnoncourt, Raoul</creatorcontrib><creatorcontrib>Driess, Matthias</creatorcontrib><creatorcontrib>Rosowski, Frank</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baumgarten, Robert</au><au>Ingale, Piyush</au><au>Ebert, Fabian</au><au>Mazheika, Aliaksei</au><au>Gioria, Esteban</au><au>Trapp, Katharina</au><au>Profita, Kevin D.</au><au>Naumann d'Alnoncourt, Raoul</au><au>Driess, Matthias</au><au>Rosowski, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the Coke Formation in Dehydrogenation of Propane by Adding Nickel to Supported Gallium Oxide</atitle><jtitle>ChemCatChem</jtitle><date>2024-04-22</date><risdate>2024</risdate><volume>16</volume><issue>8</issue><epage>n/a</epage><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Atomic layer deposition was applied on mesoporous silica to synthesize a highly dispersed gallium oxide catalyst. This system was used as starting material to investigate different loadings of nickel in the dehydrogenation of propane under industrially relevant, Oleflex‐like conditions. The formation of NiGa alloys was confirmed by X‐ray diffraction analysis and electron microscopy. Surprisingly, the nanoalloys enhanced the selectivity towards C3H6 while decreasing the tendency for coking. Herein, in situ thermogravimetry, and measured mass fractions of carbon revealed that the coking rate was reduced by over 50 % compared to the pristine gallium oxide. Generally, the increased selectivity can be explained by the partial hydrogenation and reduction of the gallium oxide surface. The optimum temperature for the removal of deposited carbon was evaluated by a temperature programmed oxidation. Finally, the best‐performing Ni−GaOx catalyst was employed in a cycled experiment with periodic reaction and regeneration tests. After regeneration, the selected Ni−GaOx catalyst provided a higher yield of propylene compared to the unmodified gallium oxide. A supported gallium oxide catalyst, synthesized by atomic layer deposition, was modified by the addition of nickel, and used in the dehydrogenation of propane. Resulting NiGa nanoparticles helped to reduce the coke formation on gallium oxide under industrially relevant conditions. Finally, the catalyst system could be regenerated by an oxidative treatment.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202301261</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9873-4103</orcidid><orcidid>https://orcid.org/0000-0003-1718-9797</orcidid><orcidid>https://orcid.org/0000-0002-3535-4234</orcidid><orcidid>https://orcid.org/0000-0001-6918-5734</orcidid><orcidid>https://orcid.org/0000-0002-9946-4619</orcidid><orcidid>https://orcid.org/0000-0002-4705-1804</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2024-04, Vol.16 (8), p.n/a
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_3043627601
source Wiley Online Library All Journals
subjects alloy
Atomic layer epitaxy
Carbon
Catalysts
coke formation
Coking
Dehydrogenation
gallium oxide
Gallium oxides
Nanoalloys
Nickel
Oxidation
Propane
propane dehydrogenation
Propylene
Regeneration
Thermogravimetry
title Controlling the Coke Formation in Dehydrogenation of Propane by Adding Nickel to Supported Gallium Oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20Coke%20Formation%20in%20Dehydrogenation%20of%20Propane%20by%20Adding%20Nickel%20to%20Supported%20Gallium%20Oxide&rft.jtitle=ChemCatChem&rft.au=Baumgarten,%20Robert&rft.date=2024-04-22&rft.volume=16&rft.issue=8&rft.epage=n/a&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202301261&rft_dat=%3Cproquest_cross%3E3043627601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3043627601&rft_id=info:pmid/&rfr_iscdi=true