3D printing of cyanate ester resins with interpenetration networks for enhanced thermal and mechanical properties

Cyanate ester (PT‐30) resin possesses exceptional thermal and mechanical properties, including high heat distortion temperature, high glass transition temperature (Tg), and outstanding mechanical characteristics. Conversely, the Tg of the homopolymer of tris(2‐hydroxyethyl)isocyanurate triacrylate (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2024-06, Vol.141 (21), p.n/a
Hauptverfasser: Zaman, Saqlain, Favela, Sergio, Herrera, Nicolas E., Gandara, Alejandro, Molina, Laura, Hassan, Md. Sahid, Gomez, Sofia Gabriela, Ramirez, Jean E. Montes, Mahmud, Md. Shahjahan, Martinez, Ana C., Maurel, Alexis, Gan, Zhengtao, MacDonald, Eric, Lin, Yirong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page
container_title Journal of applied polymer science
container_volume 141
creator Zaman, Saqlain
Favela, Sergio
Herrera, Nicolas E.
Gandara, Alejandro
Molina, Laura
Hassan, Md. Sahid
Gomez, Sofia Gabriela
Ramirez, Jean E. Montes
Mahmud, Md. Shahjahan
Martinez, Ana C.
Maurel, Alexis
Gan, Zhengtao
MacDonald, Eric
Lin, Yirong
description Cyanate ester (PT‐30) resin possesses exceptional thermal and mechanical properties, including high heat distortion temperature, high glass transition temperature (Tg), and outstanding mechanical characteristics. Conversely, the Tg of the homopolymer of tris(2‐hydroxyethyl)isocyanurate triacrylate (T‐acrylate) surpasses that of other acrylates. The combination of PT‐30 and T‐acrylate results in the formation of an interpenetrating polymer network (IPN) through a dual curing mechanism. Furthermore, the combination of these two polymers enables the tuning of rheology for shear thinning behavior for Ink Extrusion 3D printing technology by adjusting the amount of photoinitiator and rheological modifier. Here, 3D printable ink was formulated using PT‐30, T‐acrylate with a higher Tg, a photoinitiator, and a powdered rheological additive. The printed structures underwent a dual‐curing process involving exposure to UV light and thermal curing. Thermomechanical properties of the printed samples were characterized using dynamic mechanical analysis, thermogravimetric analysis, and tensile testing. The successful formation of an IPN structure through the polymerization of T‐acrylate and PT‐30 was observed, resulting in improved mechanical properties and an elevated Tg. The Fourier transform infrared spectroscopy analysis verified the formation of cross‐linked samples. Overall, this study demonstrates the feasibility of Ink Extrusion 3D printing, using a cyanate ester resin and tris(2‐hydroxyethyl)isocyanurate triacrylate with a dual‐curing mechanism. The enhanced mechanical properties at elevated temperatures (~80% retention of room temperature tensile strength at 200°C for sample with 70/30 wt%) and high Tg of 349 ± 3°C for printed structures shown in this study make them suitable for high‐performance structural applications in industries such as aerospace, defense, and microelectronics. Visual Overview of the Material Preparation, Manufacturing Process, High‐Temperature Testing, with Results.
doi_str_mv 10.1002/app.55423
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3043518086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3043518086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2573-c129e7a00a592187bc16ac67358478f0ff4e749045fe22868f22195ba5735eb93</originalsourceid><addsrcrecordid>eNp1kE1PAyEQhonRxFo9-A9IPHnYFthlF45N_Uya2IOeCaWDpbbsFmg2_fei69XTfD0zb-ZF6JaSCSWETXXXTTivWHmGRpTIpqhqJs7RKM9oIaTkl-gqxi0hlHJSj9ChfMBdcD45_4lbi81Je50AQ0wQcIDofMS9SxucGQgdeEhBJ9d6nLO-DV8R2zZg8BvtDaxx2kDY6x3Wfo33YHLXmVx2oe0gJAfxGl1YvYtw8xfH6OPp8X3-Uizenl_ns0VhGG_KwlAmodGEaC4ZFc3K0Fqbuim5qBphibUVNJUkFbfAmKiFZYxKvtJ5mcNKlmN0N9zN0odj_kdt22PwWVKVpCo5FUTUmbofKBPaGANYld3Y63BSlKgfR1V2VP06mtnpwPZuB6f_QTVbLoeNbwdVeKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043518086</pqid></control><display><type>article</type><title>3D printing of cyanate ester resins with interpenetration networks for enhanced thermal and mechanical properties</title><source>Wiley-Blackwell Journals</source><creator>Zaman, Saqlain ; Favela, Sergio ; Herrera, Nicolas E. ; Gandara, Alejandro ; Molina, Laura ; Hassan, Md. Sahid ; Gomez, Sofia Gabriela ; Ramirez, Jean E. Montes ; Mahmud, Md. Shahjahan ; Martinez, Ana C. ; Maurel, Alexis ; Gan, Zhengtao ; MacDonald, Eric ; Lin, Yirong</creator><creatorcontrib>Zaman, Saqlain ; Favela, Sergio ; Herrera, Nicolas E. ; Gandara, Alejandro ; Molina, Laura ; Hassan, Md. Sahid ; Gomez, Sofia Gabriela ; Ramirez, Jean E. Montes ; Mahmud, Md. Shahjahan ; Martinez, Ana C. ; Maurel, Alexis ; Gan, Zhengtao ; MacDonald, Eric ; Lin, Yirong</creatorcontrib><description>Cyanate ester (PT‐30) resin possesses exceptional thermal and mechanical properties, including high heat distortion temperature, high glass transition temperature (Tg), and outstanding mechanical characteristics. Conversely, the Tg of the homopolymer of tris(2‐hydroxyethyl)isocyanurate triacrylate (T‐acrylate) surpasses that of other acrylates. The combination of PT‐30 and T‐acrylate results in the formation of an interpenetrating polymer network (IPN) through a dual curing mechanism. Furthermore, the combination of these two polymers enables the tuning of rheology for shear thinning behavior for Ink Extrusion 3D printing technology by adjusting the amount of photoinitiator and rheological modifier. Here, 3D printable ink was formulated using PT‐30, T‐acrylate with a higher Tg, a photoinitiator, and a powdered rheological additive. The printed structures underwent a dual‐curing process involving exposure to UV light and thermal curing. Thermomechanical properties of the printed samples were characterized using dynamic mechanical analysis, thermogravimetric analysis, and tensile testing. The successful formation of an IPN structure through the polymerization of T‐acrylate and PT‐30 was observed, resulting in improved mechanical properties and an elevated Tg. The Fourier transform infrared spectroscopy analysis verified the formation of cross‐linked samples. Overall, this study demonstrates the feasibility of Ink Extrusion 3D printing, using a cyanate ester resin and tris(2‐hydroxyethyl)isocyanurate triacrylate with a dual‐curing mechanism. The enhanced mechanical properties at elevated temperatures (~80% retention of room temperature tensile strength at 200°C for sample with 70/30 wt%) and high Tg of 349 ± 3°C for printed structures shown in this study make them suitable for high‐performance structural applications in industries such as aerospace, defense, and microelectronics. Visual Overview of the Material Preparation, Manufacturing Process, High‐Temperature Testing, with Results.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.55423</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>3-D printers ; Acrylates ; composites ; Curing ; Cyanates ; Extrusion ; Feasibility studies ; Fourier transforms ; Glass transition temperature ; High temperature ; Infrared analysis ; Interpenetrating networks ; manufacturing ; Mechanical properties ; Photoinitiators ; Polymers ; Resins ; Rheological properties ; Rheology ; Room temperature ; Shear thinning (liquids) ; spectroscopy ; Temperature ; Tensile strength ; Tensile tests ; Thermodynamic properties ; Thermogravimetric analysis ; thermogravimetric analysis (TGA) ; Thermomechanical properties ; Three dimensional printing ; Ultraviolet radiation</subject><ispartof>Journal of applied polymer science, 2024-06, Vol.141 (21), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2573-c129e7a00a592187bc16ac67358478f0ff4e749045fe22868f22195ba5735eb93</cites><orcidid>0000-0002-9003-9712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.55423$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.55423$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zaman, Saqlain</creatorcontrib><creatorcontrib>Favela, Sergio</creatorcontrib><creatorcontrib>Herrera, Nicolas E.</creatorcontrib><creatorcontrib>Gandara, Alejandro</creatorcontrib><creatorcontrib>Molina, Laura</creatorcontrib><creatorcontrib>Hassan, Md. Sahid</creatorcontrib><creatorcontrib>Gomez, Sofia Gabriela</creatorcontrib><creatorcontrib>Ramirez, Jean E. Montes</creatorcontrib><creatorcontrib>Mahmud, Md. Shahjahan</creatorcontrib><creatorcontrib>Martinez, Ana C.</creatorcontrib><creatorcontrib>Maurel, Alexis</creatorcontrib><creatorcontrib>Gan, Zhengtao</creatorcontrib><creatorcontrib>MacDonald, Eric</creatorcontrib><creatorcontrib>Lin, Yirong</creatorcontrib><title>3D printing of cyanate ester resins with interpenetration networks for enhanced thermal and mechanical properties</title><title>Journal of applied polymer science</title><description>Cyanate ester (PT‐30) resin possesses exceptional thermal and mechanical properties, including high heat distortion temperature, high glass transition temperature (Tg), and outstanding mechanical characteristics. Conversely, the Tg of the homopolymer of tris(2‐hydroxyethyl)isocyanurate triacrylate (T‐acrylate) surpasses that of other acrylates. The combination of PT‐30 and T‐acrylate results in the formation of an interpenetrating polymer network (IPN) through a dual curing mechanism. Furthermore, the combination of these two polymers enables the tuning of rheology for shear thinning behavior for Ink Extrusion 3D printing technology by adjusting the amount of photoinitiator and rheological modifier. Here, 3D printable ink was formulated using PT‐30, T‐acrylate with a higher Tg, a photoinitiator, and a powdered rheological additive. The printed structures underwent a dual‐curing process involving exposure to UV light and thermal curing. Thermomechanical properties of the printed samples were characterized using dynamic mechanical analysis, thermogravimetric analysis, and tensile testing. The successful formation of an IPN structure through the polymerization of T‐acrylate and PT‐30 was observed, resulting in improved mechanical properties and an elevated Tg. The Fourier transform infrared spectroscopy analysis verified the formation of cross‐linked samples. Overall, this study demonstrates the feasibility of Ink Extrusion 3D printing, using a cyanate ester resin and tris(2‐hydroxyethyl)isocyanurate triacrylate with a dual‐curing mechanism. The enhanced mechanical properties at elevated temperatures (~80% retention of room temperature tensile strength at 200°C for sample with 70/30 wt%) and high Tg of 349 ± 3°C for printed structures shown in this study make them suitable for high‐performance structural applications in industries such as aerospace, defense, and microelectronics. Visual Overview of the Material Preparation, Manufacturing Process, High‐Temperature Testing, with Results.</description><subject>3-D printers</subject><subject>Acrylates</subject><subject>composites</subject><subject>Curing</subject><subject>Cyanates</subject><subject>Extrusion</subject><subject>Feasibility studies</subject><subject>Fourier transforms</subject><subject>Glass transition temperature</subject><subject>High temperature</subject><subject>Infrared analysis</subject><subject>Interpenetrating networks</subject><subject>manufacturing</subject><subject>Mechanical properties</subject><subject>Photoinitiators</subject><subject>Polymers</subject><subject>Resins</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Room temperature</subject><subject>Shear thinning (liquids)</subject><subject>spectroscopy</subject><subject>Temperature</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>thermogravimetric analysis (TGA)</subject><subject>Thermomechanical properties</subject><subject>Three dimensional printing</subject><subject>Ultraviolet radiation</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAyEQhonRxFo9-A9IPHnYFthlF45N_Uya2IOeCaWDpbbsFmg2_fei69XTfD0zb-ZF6JaSCSWETXXXTTivWHmGRpTIpqhqJs7RKM9oIaTkl-gqxi0hlHJSj9ChfMBdcD45_4lbi81Je50AQ0wQcIDofMS9SxucGQgdeEhBJ9d6nLO-DV8R2zZg8BvtDaxx2kDY6x3Wfo33YHLXmVx2oe0gJAfxGl1YvYtw8xfH6OPp8X3-Uizenl_ns0VhGG_KwlAmodGEaC4ZFc3K0Fqbuim5qBphibUVNJUkFbfAmKiFZYxKvtJ5mcNKlmN0N9zN0odj_kdt22PwWVKVpCo5FUTUmbofKBPaGANYld3Y63BSlKgfR1V2VP06mtnpwPZuB6f_QTVbLoeNbwdVeKQ</recordid><startdate>20240605</startdate><enddate>20240605</enddate><creator>Zaman, Saqlain</creator><creator>Favela, Sergio</creator><creator>Herrera, Nicolas E.</creator><creator>Gandara, Alejandro</creator><creator>Molina, Laura</creator><creator>Hassan, Md. Sahid</creator><creator>Gomez, Sofia Gabriela</creator><creator>Ramirez, Jean E. Montes</creator><creator>Mahmud, Md. Shahjahan</creator><creator>Martinez, Ana C.</creator><creator>Maurel, Alexis</creator><creator>Gan, Zhengtao</creator><creator>MacDonald, Eric</creator><creator>Lin, Yirong</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9003-9712</orcidid></search><sort><creationdate>20240605</creationdate><title>3D printing of cyanate ester resins with interpenetration networks for enhanced thermal and mechanical properties</title><author>Zaman, Saqlain ; Favela, Sergio ; Herrera, Nicolas E. ; Gandara, Alejandro ; Molina, Laura ; Hassan, Md. Sahid ; Gomez, Sofia Gabriela ; Ramirez, Jean E. Montes ; Mahmud, Md. Shahjahan ; Martinez, Ana C. ; Maurel, Alexis ; Gan, Zhengtao ; MacDonald, Eric ; Lin, Yirong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2573-c129e7a00a592187bc16ac67358478f0ff4e749045fe22868f22195ba5735eb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Acrylates</topic><topic>composites</topic><topic>Curing</topic><topic>Cyanates</topic><topic>Extrusion</topic><topic>Feasibility studies</topic><topic>Fourier transforms</topic><topic>Glass transition temperature</topic><topic>High temperature</topic><topic>Infrared analysis</topic><topic>Interpenetrating networks</topic><topic>manufacturing</topic><topic>Mechanical properties</topic><topic>Photoinitiators</topic><topic>Polymers</topic><topic>Resins</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Room temperature</topic><topic>Shear thinning (liquids)</topic><topic>spectroscopy</topic><topic>Temperature</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>thermogravimetric analysis (TGA)</topic><topic>Thermomechanical properties</topic><topic>Three dimensional printing</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaman, Saqlain</creatorcontrib><creatorcontrib>Favela, Sergio</creatorcontrib><creatorcontrib>Herrera, Nicolas E.</creatorcontrib><creatorcontrib>Gandara, Alejandro</creatorcontrib><creatorcontrib>Molina, Laura</creatorcontrib><creatorcontrib>Hassan, Md. Sahid</creatorcontrib><creatorcontrib>Gomez, Sofia Gabriela</creatorcontrib><creatorcontrib>Ramirez, Jean E. Montes</creatorcontrib><creatorcontrib>Mahmud, Md. Shahjahan</creatorcontrib><creatorcontrib>Martinez, Ana C.</creatorcontrib><creatorcontrib>Maurel, Alexis</creatorcontrib><creatorcontrib>Gan, Zhengtao</creatorcontrib><creatorcontrib>MacDonald, Eric</creatorcontrib><creatorcontrib>Lin, Yirong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaman, Saqlain</au><au>Favela, Sergio</au><au>Herrera, Nicolas E.</au><au>Gandara, Alejandro</au><au>Molina, Laura</au><au>Hassan, Md. Sahid</au><au>Gomez, Sofia Gabriela</au><au>Ramirez, Jean E. Montes</au><au>Mahmud, Md. Shahjahan</au><au>Martinez, Ana C.</au><au>Maurel, Alexis</au><au>Gan, Zhengtao</au><au>MacDonald, Eric</au><au>Lin, Yirong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printing of cyanate ester resins with interpenetration networks for enhanced thermal and mechanical properties</atitle><jtitle>Journal of applied polymer science</jtitle><date>2024-06-05</date><risdate>2024</risdate><volume>141</volume><issue>21</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Cyanate ester (PT‐30) resin possesses exceptional thermal and mechanical properties, including high heat distortion temperature, high glass transition temperature (Tg), and outstanding mechanical characteristics. Conversely, the Tg of the homopolymer of tris(2‐hydroxyethyl)isocyanurate triacrylate (T‐acrylate) surpasses that of other acrylates. The combination of PT‐30 and T‐acrylate results in the formation of an interpenetrating polymer network (IPN) through a dual curing mechanism. Furthermore, the combination of these two polymers enables the tuning of rheology for shear thinning behavior for Ink Extrusion 3D printing technology by adjusting the amount of photoinitiator and rheological modifier. Here, 3D printable ink was formulated using PT‐30, T‐acrylate with a higher Tg, a photoinitiator, and a powdered rheological additive. The printed structures underwent a dual‐curing process involving exposure to UV light and thermal curing. Thermomechanical properties of the printed samples were characterized using dynamic mechanical analysis, thermogravimetric analysis, and tensile testing. The successful formation of an IPN structure through the polymerization of T‐acrylate and PT‐30 was observed, resulting in improved mechanical properties and an elevated Tg. The Fourier transform infrared spectroscopy analysis verified the formation of cross‐linked samples. Overall, this study demonstrates the feasibility of Ink Extrusion 3D printing, using a cyanate ester resin and tris(2‐hydroxyethyl)isocyanurate triacrylate with a dual‐curing mechanism. The enhanced mechanical properties at elevated temperatures (~80% retention of room temperature tensile strength at 200°C for sample with 70/30 wt%) and high Tg of 349 ± 3°C for printed structures shown in this study make them suitable for high‐performance structural applications in industries such as aerospace, defense, and microelectronics. Visual Overview of the Material Preparation, Manufacturing Process, High‐Temperature Testing, with Results.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.55423</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9003-9712</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2024-06, Vol.141 (21), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_3043518086
source Wiley-Blackwell Journals
subjects 3-D printers
Acrylates
composites
Curing
Cyanates
Extrusion
Feasibility studies
Fourier transforms
Glass transition temperature
High temperature
Infrared analysis
Interpenetrating networks
manufacturing
Mechanical properties
Photoinitiators
Polymers
Resins
Rheological properties
Rheology
Room temperature
Shear thinning (liquids)
spectroscopy
Temperature
Tensile strength
Tensile tests
Thermodynamic properties
Thermogravimetric analysis
thermogravimetric analysis (TGA)
Thermomechanical properties
Three dimensional printing
Ultraviolet radiation
title 3D printing of cyanate ester resins with interpenetration networks for enhanced thermal and mechanical properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printing%20of%20cyanate%20ester%20resins%20with%20interpenetration%20networks%20for%20enhanced%20thermal%20and%20mechanical%20properties&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Zaman,%20Saqlain&rft.date=2024-06-05&rft.volume=141&rft.issue=21&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.55423&rft_dat=%3Cproquest_cross%3E3043518086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3043518086&rft_id=info:pmid/&rfr_iscdi=true