3D printing of cyanate ester resins with interpenetration networks for enhanced thermal and mechanical properties
Cyanate ester (PT‐30) resin possesses exceptional thermal and mechanical properties, including high heat distortion temperature, high glass transition temperature (Tg), and outstanding mechanical characteristics. Conversely, the Tg of the homopolymer of tris(2‐hydroxyethyl)isocyanurate triacrylate (...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2024-06, Vol.141 (21), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 141 |
creator | Zaman, Saqlain Favela, Sergio Herrera, Nicolas E. Gandara, Alejandro Molina, Laura Hassan, Md. Sahid Gomez, Sofia Gabriela Ramirez, Jean E. Montes Mahmud, Md. Shahjahan Martinez, Ana C. Maurel, Alexis Gan, Zhengtao MacDonald, Eric Lin, Yirong |
description | Cyanate ester (PT‐30) resin possesses exceptional thermal and mechanical properties, including high heat distortion temperature, high glass transition temperature (Tg), and outstanding mechanical characteristics. Conversely, the Tg of the homopolymer of tris(2‐hydroxyethyl)isocyanurate triacrylate (T‐acrylate) surpasses that of other acrylates. The combination of PT‐30 and T‐acrylate results in the formation of an interpenetrating polymer network (IPN) through a dual curing mechanism. Furthermore, the combination of these two polymers enables the tuning of rheology for shear thinning behavior for Ink Extrusion 3D printing technology by adjusting the amount of photoinitiator and rheological modifier. Here, 3D printable ink was formulated using PT‐30, T‐acrylate with a higher Tg, a photoinitiator, and a powdered rheological additive. The printed structures underwent a dual‐curing process involving exposure to UV light and thermal curing. Thermomechanical properties of the printed samples were characterized using dynamic mechanical analysis, thermogravimetric analysis, and tensile testing. The successful formation of an IPN structure through the polymerization of T‐acrylate and PT‐30 was observed, resulting in improved mechanical properties and an elevated Tg. The Fourier transform infrared spectroscopy analysis verified the formation of cross‐linked samples. Overall, this study demonstrates the feasibility of Ink Extrusion 3D printing, using a cyanate ester resin and tris(2‐hydroxyethyl)isocyanurate triacrylate with a dual‐curing mechanism. The enhanced mechanical properties at elevated temperatures (~80% retention of room temperature tensile strength at 200°C for sample with 70/30 wt%) and high Tg of 349 ± 3°C for printed structures shown in this study make them suitable for high‐performance structural applications in industries such as aerospace, defense, and microelectronics.
Visual Overview of the Material Preparation, Manufacturing Process, High‐Temperature Testing, with Results. |
doi_str_mv | 10.1002/app.55423 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3043518086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3043518086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2573-c129e7a00a592187bc16ac67358478f0ff4e749045fe22868f22195ba5735eb93</originalsourceid><addsrcrecordid>eNp1kE1PAyEQhonRxFo9-A9IPHnYFthlF45N_Uya2IOeCaWDpbbsFmg2_fei69XTfD0zb-ZF6JaSCSWETXXXTTivWHmGRpTIpqhqJs7RKM9oIaTkl-gqxi0hlHJSj9ChfMBdcD45_4lbi81Je50AQ0wQcIDofMS9SxucGQgdeEhBJ9d6nLO-DV8R2zZg8BvtDaxx2kDY6x3Wfo33YHLXmVx2oe0gJAfxGl1YvYtw8xfH6OPp8X3-Uizenl_ns0VhGG_KwlAmodGEaC4ZFc3K0Fqbuim5qBphibUVNJUkFbfAmKiFZYxKvtJ5mcNKlmN0N9zN0odj_kdt22PwWVKVpCo5FUTUmbofKBPaGANYld3Y63BSlKgfR1V2VP06mtnpwPZuB6f_QTVbLoeNbwdVeKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043518086</pqid></control><display><type>article</type><title>3D printing of cyanate ester resins with interpenetration networks for enhanced thermal and mechanical properties</title><source>Wiley-Blackwell Journals</source><creator>Zaman, Saqlain ; Favela, Sergio ; Herrera, Nicolas E. ; Gandara, Alejandro ; Molina, Laura ; Hassan, Md. Sahid ; Gomez, Sofia Gabriela ; Ramirez, Jean E. Montes ; Mahmud, Md. Shahjahan ; Martinez, Ana C. ; Maurel, Alexis ; Gan, Zhengtao ; MacDonald, Eric ; Lin, Yirong</creator><creatorcontrib>Zaman, Saqlain ; Favela, Sergio ; Herrera, Nicolas E. ; Gandara, Alejandro ; Molina, Laura ; Hassan, Md. Sahid ; Gomez, Sofia Gabriela ; Ramirez, Jean E. Montes ; Mahmud, Md. Shahjahan ; Martinez, Ana C. ; Maurel, Alexis ; Gan, Zhengtao ; MacDonald, Eric ; Lin, Yirong</creatorcontrib><description>Cyanate ester (PT‐30) resin possesses exceptional thermal and mechanical properties, including high heat distortion temperature, high glass transition temperature (Tg), and outstanding mechanical characteristics. Conversely, the Tg of the homopolymer of tris(2‐hydroxyethyl)isocyanurate triacrylate (T‐acrylate) surpasses that of other acrylates. The combination of PT‐30 and T‐acrylate results in the formation of an interpenetrating polymer network (IPN) through a dual curing mechanism. Furthermore, the combination of these two polymers enables the tuning of rheology for shear thinning behavior for Ink Extrusion 3D printing technology by adjusting the amount of photoinitiator and rheological modifier. Here, 3D printable ink was formulated using PT‐30, T‐acrylate with a higher Tg, a photoinitiator, and a powdered rheological additive. The printed structures underwent a dual‐curing process involving exposure to UV light and thermal curing. Thermomechanical properties of the printed samples were characterized using dynamic mechanical analysis, thermogravimetric analysis, and tensile testing. The successful formation of an IPN structure through the polymerization of T‐acrylate and PT‐30 was observed, resulting in improved mechanical properties and an elevated Tg. The Fourier transform infrared spectroscopy analysis verified the formation of cross‐linked samples. Overall, this study demonstrates the feasibility of Ink Extrusion 3D printing, using a cyanate ester resin and tris(2‐hydroxyethyl)isocyanurate triacrylate with a dual‐curing mechanism. The enhanced mechanical properties at elevated temperatures (~80% retention of room temperature tensile strength at 200°C for sample with 70/30 wt%) and high Tg of 349 ± 3°C for printed structures shown in this study make them suitable for high‐performance structural applications in industries such as aerospace, defense, and microelectronics.
Visual Overview of the Material Preparation, Manufacturing Process, High‐Temperature Testing, with Results.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.55423</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>3-D printers ; Acrylates ; composites ; Curing ; Cyanates ; Extrusion ; Feasibility studies ; Fourier transforms ; Glass transition temperature ; High temperature ; Infrared analysis ; Interpenetrating networks ; manufacturing ; Mechanical properties ; Photoinitiators ; Polymers ; Resins ; Rheological properties ; Rheology ; Room temperature ; Shear thinning (liquids) ; spectroscopy ; Temperature ; Tensile strength ; Tensile tests ; Thermodynamic properties ; Thermogravimetric analysis ; thermogravimetric analysis (TGA) ; Thermomechanical properties ; Three dimensional printing ; Ultraviolet radiation</subject><ispartof>Journal of applied polymer science, 2024-06, Vol.141 (21), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2573-c129e7a00a592187bc16ac67358478f0ff4e749045fe22868f22195ba5735eb93</cites><orcidid>0000-0002-9003-9712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.55423$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.55423$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zaman, Saqlain</creatorcontrib><creatorcontrib>Favela, Sergio</creatorcontrib><creatorcontrib>Herrera, Nicolas E.</creatorcontrib><creatorcontrib>Gandara, Alejandro</creatorcontrib><creatorcontrib>Molina, Laura</creatorcontrib><creatorcontrib>Hassan, Md. Sahid</creatorcontrib><creatorcontrib>Gomez, Sofia Gabriela</creatorcontrib><creatorcontrib>Ramirez, Jean E. Montes</creatorcontrib><creatorcontrib>Mahmud, Md. Shahjahan</creatorcontrib><creatorcontrib>Martinez, Ana C.</creatorcontrib><creatorcontrib>Maurel, Alexis</creatorcontrib><creatorcontrib>Gan, Zhengtao</creatorcontrib><creatorcontrib>MacDonald, Eric</creatorcontrib><creatorcontrib>Lin, Yirong</creatorcontrib><title>3D printing of cyanate ester resins with interpenetration networks for enhanced thermal and mechanical properties</title><title>Journal of applied polymer science</title><description>Cyanate ester (PT‐30) resin possesses exceptional thermal and mechanical properties, including high heat distortion temperature, high glass transition temperature (Tg), and outstanding mechanical characteristics. Conversely, the Tg of the homopolymer of tris(2‐hydroxyethyl)isocyanurate triacrylate (T‐acrylate) surpasses that of other acrylates. The combination of PT‐30 and T‐acrylate results in the formation of an interpenetrating polymer network (IPN) through a dual curing mechanism. Furthermore, the combination of these two polymers enables the tuning of rheology for shear thinning behavior for Ink Extrusion 3D printing technology by adjusting the amount of photoinitiator and rheological modifier. Here, 3D printable ink was formulated using PT‐30, T‐acrylate with a higher Tg, a photoinitiator, and a powdered rheological additive. The printed structures underwent a dual‐curing process involving exposure to UV light and thermal curing. Thermomechanical properties of the printed samples were characterized using dynamic mechanical analysis, thermogravimetric analysis, and tensile testing. The successful formation of an IPN structure through the polymerization of T‐acrylate and PT‐30 was observed, resulting in improved mechanical properties and an elevated Tg. The Fourier transform infrared spectroscopy analysis verified the formation of cross‐linked samples. Overall, this study demonstrates the feasibility of Ink Extrusion 3D printing, using a cyanate ester resin and tris(2‐hydroxyethyl)isocyanurate triacrylate with a dual‐curing mechanism. The enhanced mechanical properties at elevated temperatures (~80% retention of room temperature tensile strength at 200°C for sample with 70/30 wt%) and high Tg of 349 ± 3°C for printed structures shown in this study make them suitable for high‐performance structural applications in industries such as aerospace, defense, and microelectronics.
Visual Overview of the Material Preparation, Manufacturing Process, High‐Temperature Testing, with Results.</description><subject>3-D printers</subject><subject>Acrylates</subject><subject>composites</subject><subject>Curing</subject><subject>Cyanates</subject><subject>Extrusion</subject><subject>Feasibility studies</subject><subject>Fourier transforms</subject><subject>Glass transition temperature</subject><subject>High temperature</subject><subject>Infrared analysis</subject><subject>Interpenetrating networks</subject><subject>manufacturing</subject><subject>Mechanical properties</subject><subject>Photoinitiators</subject><subject>Polymers</subject><subject>Resins</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Room temperature</subject><subject>Shear thinning (liquids)</subject><subject>spectroscopy</subject><subject>Temperature</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>thermogravimetric analysis (TGA)</subject><subject>Thermomechanical properties</subject><subject>Three dimensional printing</subject><subject>Ultraviolet radiation</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAyEQhonRxFo9-A9IPHnYFthlF45N_Uya2IOeCaWDpbbsFmg2_fei69XTfD0zb-ZF6JaSCSWETXXXTTivWHmGRpTIpqhqJs7RKM9oIaTkl-gqxi0hlHJSj9ChfMBdcD45_4lbi81Je50AQ0wQcIDofMS9SxucGQgdeEhBJ9d6nLO-DV8R2zZg8BvtDaxx2kDY6x3Wfo33YHLXmVx2oe0gJAfxGl1YvYtw8xfH6OPp8X3-Uizenl_ns0VhGG_KwlAmodGEaC4ZFc3K0Fqbuim5qBphibUVNJUkFbfAmKiFZYxKvtJ5mcNKlmN0N9zN0odj_kdt22PwWVKVpCo5FUTUmbofKBPaGANYld3Y63BSlKgfR1V2VP06mtnpwPZuB6f_QTVbLoeNbwdVeKQ</recordid><startdate>20240605</startdate><enddate>20240605</enddate><creator>Zaman, Saqlain</creator><creator>Favela, Sergio</creator><creator>Herrera, Nicolas E.</creator><creator>Gandara, Alejandro</creator><creator>Molina, Laura</creator><creator>Hassan, Md. Sahid</creator><creator>Gomez, Sofia Gabriela</creator><creator>Ramirez, Jean E. Montes</creator><creator>Mahmud, Md. Shahjahan</creator><creator>Martinez, Ana C.</creator><creator>Maurel, Alexis</creator><creator>Gan, Zhengtao</creator><creator>MacDonald, Eric</creator><creator>Lin, Yirong</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9003-9712</orcidid></search><sort><creationdate>20240605</creationdate><title>3D printing of cyanate ester resins with interpenetration networks for enhanced thermal and mechanical properties</title><author>Zaman, Saqlain ; Favela, Sergio ; Herrera, Nicolas E. ; Gandara, Alejandro ; Molina, Laura ; Hassan, Md. Sahid ; Gomez, Sofia Gabriela ; Ramirez, Jean E. Montes ; Mahmud, Md. Shahjahan ; Martinez, Ana C. ; Maurel, Alexis ; Gan, Zhengtao ; MacDonald, Eric ; Lin, Yirong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2573-c129e7a00a592187bc16ac67358478f0ff4e749045fe22868f22195ba5735eb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Acrylates</topic><topic>composites</topic><topic>Curing</topic><topic>Cyanates</topic><topic>Extrusion</topic><topic>Feasibility studies</topic><topic>Fourier transforms</topic><topic>Glass transition temperature</topic><topic>High temperature</topic><topic>Infrared analysis</topic><topic>Interpenetrating networks</topic><topic>manufacturing</topic><topic>Mechanical properties</topic><topic>Photoinitiators</topic><topic>Polymers</topic><topic>Resins</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Room temperature</topic><topic>Shear thinning (liquids)</topic><topic>spectroscopy</topic><topic>Temperature</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>thermogravimetric analysis (TGA)</topic><topic>Thermomechanical properties</topic><topic>Three dimensional printing</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaman, Saqlain</creatorcontrib><creatorcontrib>Favela, Sergio</creatorcontrib><creatorcontrib>Herrera, Nicolas E.</creatorcontrib><creatorcontrib>Gandara, Alejandro</creatorcontrib><creatorcontrib>Molina, Laura</creatorcontrib><creatorcontrib>Hassan, Md. Sahid</creatorcontrib><creatorcontrib>Gomez, Sofia Gabriela</creatorcontrib><creatorcontrib>Ramirez, Jean E. Montes</creatorcontrib><creatorcontrib>Mahmud, Md. Shahjahan</creatorcontrib><creatorcontrib>Martinez, Ana C.</creatorcontrib><creatorcontrib>Maurel, Alexis</creatorcontrib><creatorcontrib>Gan, Zhengtao</creatorcontrib><creatorcontrib>MacDonald, Eric</creatorcontrib><creatorcontrib>Lin, Yirong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaman, Saqlain</au><au>Favela, Sergio</au><au>Herrera, Nicolas E.</au><au>Gandara, Alejandro</au><au>Molina, Laura</au><au>Hassan, Md. Sahid</au><au>Gomez, Sofia Gabriela</au><au>Ramirez, Jean E. Montes</au><au>Mahmud, Md. Shahjahan</au><au>Martinez, Ana C.</au><au>Maurel, Alexis</au><au>Gan, Zhengtao</au><au>MacDonald, Eric</au><au>Lin, Yirong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printing of cyanate ester resins with interpenetration networks for enhanced thermal and mechanical properties</atitle><jtitle>Journal of applied polymer science</jtitle><date>2024-06-05</date><risdate>2024</risdate><volume>141</volume><issue>21</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Cyanate ester (PT‐30) resin possesses exceptional thermal and mechanical properties, including high heat distortion temperature, high glass transition temperature (Tg), and outstanding mechanical characteristics. Conversely, the Tg of the homopolymer of tris(2‐hydroxyethyl)isocyanurate triacrylate (T‐acrylate) surpasses that of other acrylates. The combination of PT‐30 and T‐acrylate results in the formation of an interpenetrating polymer network (IPN) through a dual curing mechanism. Furthermore, the combination of these two polymers enables the tuning of rheology for shear thinning behavior for Ink Extrusion 3D printing technology by adjusting the amount of photoinitiator and rheological modifier. Here, 3D printable ink was formulated using PT‐30, T‐acrylate with a higher Tg, a photoinitiator, and a powdered rheological additive. The printed structures underwent a dual‐curing process involving exposure to UV light and thermal curing. Thermomechanical properties of the printed samples were characterized using dynamic mechanical analysis, thermogravimetric analysis, and tensile testing. The successful formation of an IPN structure through the polymerization of T‐acrylate and PT‐30 was observed, resulting in improved mechanical properties and an elevated Tg. The Fourier transform infrared spectroscopy analysis verified the formation of cross‐linked samples. Overall, this study demonstrates the feasibility of Ink Extrusion 3D printing, using a cyanate ester resin and tris(2‐hydroxyethyl)isocyanurate triacrylate with a dual‐curing mechanism. The enhanced mechanical properties at elevated temperatures (~80% retention of room temperature tensile strength at 200°C for sample with 70/30 wt%) and high Tg of 349 ± 3°C for printed structures shown in this study make them suitable for high‐performance structural applications in industries such as aerospace, defense, and microelectronics.
Visual Overview of the Material Preparation, Manufacturing Process, High‐Temperature Testing, with Results.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.55423</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9003-9712</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2024-06, Vol.141 (21), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_3043518086 |
source | Wiley-Blackwell Journals |
subjects | 3-D printers Acrylates composites Curing Cyanates Extrusion Feasibility studies Fourier transforms Glass transition temperature High temperature Infrared analysis Interpenetrating networks manufacturing Mechanical properties Photoinitiators Polymers Resins Rheological properties Rheology Room temperature Shear thinning (liquids) spectroscopy Temperature Tensile strength Tensile tests Thermodynamic properties Thermogravimetric analysis thermogravimetric analysis (TGA) Thermomechanical properties Three dimensional printing Ultraviolet radiation |
title | 3D printing of cyanate ester resins with interpenetration networks for enhanced thermal and mechanical properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printing%20of%20cyanate%20ester%20resins%20with%20interpenetration%20networks%20for%20enhanced%20thermal%20and%20mechanical%20properties&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Zaman,%20Saqlain&rft.date=2024-06-05&rft.volume=141&rft.issue=21&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.55423&rft_dat=%3Cproquest_cross%3E3043518086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3043518086&rft_id=info:pmid/&rfr_iscdi=true |