Prediction of the material consumption of PLA plus fused deposition models using artificial neural network technique

Fused Deposition Modelling (FDM) is a complex additive manufacturing (AM) process involving multiple process parameters incapable of being modelled with conventional methods such as regression and mathematical modelling. The goal of the study is to develop an Artificial Neural Network (ANN) model th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nasuha, Hani, Saad, Mohd Sazli, Baharudin, Mohamad Ezral, Nor, Azuwir Mohd, Zakaria, Mohd Zakimi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3114
creator Nasuha, Hani
Saad, Mohd Sazli
Baharudin, Mohamad Ezral
Nor, Azuwir Mohd
Zakaria, Mohd Zakimi
description Fused Deposition Modelling (FDM) is a complex additive manufacturing (AM) process involving multiple process parameters incapable of being modelled with conventional methods such as regression and mathematical modelling. The goal of the study is to develop an Artificial Neural Network (ANN) model that can accurately predict the material consumption of FDM printed parts considering the effect of process parameters such as layer height, infill density, printing temperature, and printing speed to create an ideal model that can optimize the use of resources and reduce material. The experiment was designed using face centered central composite design (FCCCD) yielding 78 specimens that were weighed using a densimeter to identify material consumption. Then, three networks with a different number of hidden layers and neurons were trained to identify the best-performing ANN structure with the lowest mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and highest coefficient of determination (R2). The fittest models were modelled and compared to identify the best-performing structure. Results indicated that the ANN model with double hidden layers with 19 and 14 neurons each showed the most precise prediction in modelling material consumption with the lowest MSE of 0.00096.
doi_str_mv 10.1063/5.0202371
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3043399809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3043399809</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-f395c908b8a32d3d85b7622f965de54894e5ba40eff9fe4e77d5ac883189a2753</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhIMoWKsH_0HAm7A1H5tNcizFLyjYg4K3Jd28sam7mzXJIv5721pPc5jhGWYQuqZkRknF78SMMMK4pCdoQoWghaxodYomhOiyYCV_P0cXKW0JYVpKNUF5FcH6JvvQ4-Bw3gDuTIboTYub0KexG_691XKOh3ZM2I0JLLYwhOQPZhcstAmPyfcf2MTsnW_2gB7GeJD8HeInztBsev81wiU6c6ZNcHXUKXp7uH9dPBXLl8fnxXxZDJTzXDiuRaOJWivDmeVWibWsGHO6EhZEqXQJYm1KAs5pByVIaYVplOJUacOk4FN088cdYtjVplxvwxj7XWXNScm51oroXer2L5Uan81-UD1E35n4U1NS71-tRX18lf8CZ_trTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3043399809</pqid></control><display><type>conference_proceeding</type><title>Prediction of the material consumption of PLA plus fused deposition models using artificial neural network technique</title><source>AIP Journals Complete</source><creator>Nasuha, Hani ; Saad, Mohd Sazli ; Baharudin, Mohamad Ezral ; Nor, Azuwir Mohd ; Zakaria, Mohd Zakimi</creator><contributor>Mustafa, Wan Azani ; Nasir, Aimi Salihah Abdul ; Aman, Muhammad Nazrin Shah Shahrol ; Rao, Kumuthawathe Ananda</contributor><creatorcontrib>Nasuha, Hani ; Saad, Mohd Sazli ; Baharudin, Mohamad Ezral ; Nor, Azuwir Mohd ; Zakaria, Mohd Zakimi ; Mustafa, Wan Azani ; Nasir, Aimi Salihah Abdul ; Aman, Muhammad Nazrin Shah Shahrol ; Rao, Kumuthawathe Ananda</creatorcontrib><description>Fused Deposition Modelling (FDM) is a complex additive manufacturing (AM) process involving multiple process parameters incapable of being modelled with conventional methods such as regression and mathematical modelling. The goal of the study is to develop an Artificial Neural Network (ANN) model that can accurately predict the material consumption of FDM printed parts considering the effect of process parameters such as layer height, infill density, printing temperature, and printing speed to create an ideal model that can optimize the use of resources and reduce material. The experiment was designed using face centered central composite design (FCCCD) yielding 78 specimens that were weighed using a densimeter to identify material consumption. Then, three networks with a different number of hidden layers and neurons were trained to identify the best-performing ANN structure with the lowest mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and highest coefficient of determination (R2). The fittest models were modelled and compared to identify the best-performing structure. Results indicated that the ANN model with double hidden layers with 19 and 14 neurons each showed the most precise prediction in modelling material consumption with the lowest MSE of 0.00096.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0202371</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Consumption ; Deposition ; Fused deposition modeling ; Mathematical models ; Neural networks ; Neurons ; Process parameters ; Redevelopment ; Root-mean-square errors</subject><ispartof>AIP conference proceedings, 2024, Vol.3114 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0202371$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4499,23912,23913,25122,27906,27907,76134</link.rule.ids></links><search><contributor>Mustafa, Wan Azani</contributor><contributor>Nasir, Aimi Salihah Abdul</contributor><contributor>Aman, Muhammad Nazrin Shah Shahrol</contributor><contributor>Rao, Kumuthawathe Ananda</contributor><creatorcontrib>Nasuha, Hani</creatorcontrib><creatorcontrib>Saad, Mohd Sazli</creatorcontrib><creatorcontrib>Baharudin, Mohamad Ezral</creatorcontrib><creatorcontrib>Nor, Azuwir Mohd</creatorcontrib><creatorcontrib>Zakaria, Mohd Zakimi</creatorcontrib><title>Prediction of the material consumption of PLA plus fused deposition models using artificial neural network technique</title><title>AIP conference proceedings</title><description>Fused Deposition Modelling (FDM) is a complex additive manufacturing (AM) process involving multiple process parameters incapable of being modelled with conventional methods such as regression and mathematical modelling. The goal of the study is to develop an Artificial Neural Network (ANN) model that can accurately predict the material consumption of FDM printed parts considering the effect of process parameters such as layer height, infill density, printing temperature, and printing speed to create an ideal model that can optimize the use of resources and reduce material. The experiment was designed using face centered central composite design (FCCCD) yielding 78 specimens that were weighed using a densimeter to identify material consumption. Then, three networks with a different number of hidden layers and neurons were trained to identify the best-performing ANN structure with the lowest mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and highest coefficient of determination (R2). The fittest models were modelled and compared to identify the best-performing structure. Results indicated that the ANN model with double hidden layers with 19 and 14 neurons each showed the most precise prediction in modelling material consumption with the lowest MSE of 0.00096.</description><subject>Artificial neural networks</subject><subject>Consumption</subject><subject>Deposition</subject><subject>Fused deposition modeling</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Process parameters</subject><subject>Redevelopment</subject><subject>Root-mean-square errors</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo1kE1LAzEYhIMoWKsH_0HAm7A1H5tNcizFLyjYg4K3Jd28sam7mzXJIv5721pPc5jhGWYQuqZkRknF78SMMMK4pCdoQoWghaxodYomhOiyYCV_P0cXKW0JYVpKNUF5FcH6JvvQ4-Bw3gDuTIboTYub0KexG_691XKOh3ZM2I0JLLYwhOQPZhcstAmPyfcf2MTsnW_2gB7GeJD8HeInztBsev81wiU6c6ZNcHXUKXp7uH9dPBXLl8fnxXxZDJTzXDiuRaOJWivDmeVWibWsGHO6EhZEqXQJYm1KAs5pByVIaYVplOJUacOk4FN088cdYtjVplxvwxj7XWXNScm51oroXer2L5Uan81-UD1E35n4U1NS71-tRX18lf8CZ_trTw</recordid><startdate>20240422</startdate><enddate>20240422</enddate><creator>Nasuha, Hani</creator><creator>Saad, Mohd Sazli</creator><creator>Baharudin, Mohamad Ezral</creator><creator>Nor, Azuwir Mohd</creator><creator>Zakaria, Mohd Zakimi</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240422</creationdate><title>Prediction of the material consumption of PLA plus fused deposition models using artificial neural network technique</title><author>Nasuha, Hani ; Saad, Mohd Sazli ; Baharudin, Mohamad Ezral ; Nor, Azuwir Mohd ; Zakaria, Mohd Zakimi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-f395c908b8a32d3d85b7622f965de54894e5ba40eff9fe4e77d5ac883189a2753</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Consumption</topic><topic>Deposition</topic><topic>Fused deposition modeling</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Process parameters</topic><topic>Redevelopment</topic><topic>Root-mean-square errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasuha, Hani</creatorcontrib><creatorcontrib>Saad, Mohd Sazli</creatorcontrib><creatorcontrib>Baharudin, Mohamad Ezral</creatorcontrib><creatorcontrib>Nor, Azuwir Mohd</creatorcontrib><creatorcontrib>Zakaria, Mohd Zakimi</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nasuha, Hani</au><au>Saad, Mohd Sazli</au><au>Baharudin, Mohamad Ezral</au><au>Nor, Azuwir Mohd</au><au>Zakaria, Mohd Zakimi</au><au>Mustafa, Wan Azani</au><au>Nasir, Aimi Salihah Abdul</au><au>Aman, Muhammad Nazrin Shah Shahrol</au><au>Rao, Kumuthawathe Ananda</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Prediction of the material consumption of PLA plus fused deposition models using artificial neural network technique</atitle><btitle>AIP conference proceedings</btitle><date>2024-04-22</date><risdate>2024</risdate><volume>3114</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Fused Deposition Modelling (FDM) is a complex additive manufacturing (AM) process involving multiple process parameters incapable of being modelled with conventional methods such as regression and mathematical modelling. The goal of the study is to develop an Artificial Neural Network (ANN) model that can accurately predict the material consumption of FDM printed parts considering the effect of process parameters such as layer height, infill density, printing temperature, and printing speed to create an ideal model that can optimize the use of resources and reduce material. The experiment was designed using face centered central composite design (FCCCD) yielding 78 specimens that were weighed using a densimeter to identify material consumption. Then, three networks with a different number of hidden layers and neurons were trained to identify the best-performing ANN structure with the lowest mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and highest coefficient of determination (R2). The fittest models were modelled and compared to identify the best-performing structure. Results indicated that the ANN model with double hidden layers with 19 and 14 neurons each showed the most precise prediction in modelling material consumption with the lowest MSE of 0.00096.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0202371</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3114 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3043399809
source AIP Journals Complete
subjects Artificial neural networks
Consumption
Deposition
Fused deposition modeling
Mathematical models
Neural networks
Neurons
Process parameters
Redevelopment
Root-mean-square errors
title Prediction of the material consumption of PLA plus fused deposition models using artificial neural network technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Prediction%20of%20the%20material%20consumption%20of%20PLA%20plus%20fused%20deposition%20models%20using%20artificial%20neural%20network%20technique&rft.btitle=AIP%20conference%20proceedings&rft.au=Nasuha,%20Hani&rft.date=2024-04-22&rft.volume=3114&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0202371&rft_dat=%3Cproquest_scita%3E3043399809%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3043399809&rft_id=info:pmid/&rfr_iscdi=true