Micro-PIV study on the influence of viscosity on the dynamics of droplet impact onto a thin film

This work presents a systematic experimental study of droplet impact onto a wet substrate. Four different silicone oils are used, covering a range of Reynolds number between 116 < Re < 1106 at two different initial wall film heights. The objective is to characterize the temporal and radial evo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2024-05, Vol.65 (5), Article 69
Hauptverfasser: Schubert, Stefan, Steigerwald, Jonas, Geppert, Anne K., Weigand, Bernhard, Lamanna, Grazia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Experiments in fluids
container_volume 65
creator Schubert, Stefan
Steigerwald, Jonas
Geppert, Anne K.
Weigand, Bernhard
Lamanna, Grazia
description This work presents a systematic experimental study of droplet impact onto a wet substrate. Four different silicone oils are used, covering a range of Reynolds number between 116 < Re < 1106 at two different initial wall film heights. The objective is to characterize the temporal and radial evolution of the velocity field within the crown crater by means of micro-PIV. Our findings show that the velocity field has the structure of an axisymmetric stagnation point flow with decaying strength a ( t ). The latter exhibits an exponential decay and can be explained in terms of the exponential decay of the pressure force exerted by the impacting droplet onto the wall film. In this context, the commonly accepted functional dependence a ( t ) ∝ t - 1 represents only the first-order Taylor approximation of the exponential decay and has therefore only a limited temporal validity. The analysis also corroborates the existence of an inertial regime concerning the velocity field for Re > 270 . This is not observed at lower Re numbers due to the increased pressure losses caused by the extensional (normal) strain during the radial spreading of the lamella. To validate these findings a holistic approach is chosen, which combines numerical results, analytical solutions and experimental data from literature. In particular, by using the continuity equation, it is shown that the experimental decay of the wall film height can be reconstructed from the velocity measurements. Consilience of results from different approaches provides a robust validation of the micro-PIV data obtained in this work. Graphical abstract
doi_str_mv 10.1007/s00348-024-03800-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3042436568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3042436568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-10f2fd10d19fb0a187b1b2fd1d5c732b93c69066191f03efe1cdb295b04bf8543</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuA6-i9TfpayuBjYEQX6ja2aaIZ2qYmrTD_3owV3bm6cM93zuUeQs4QLhAgvwwAXBQMEsGAFwAs3SMLFDxhiCj2yQLyhDNRZOKQHIWwAcC0hGJBXu-t8o49rl5oGKdmS11Px3dNbW_aSfdKU2fopw3KBTv-qs22rzqrwk5svBtaPVLbDZUaIzE6WkXK9tTYtjshB6Zqgz79mcfk-eb6aXnH1g-3q-XVmimOYmQIJjENQoOlqaHCIq-x3m2aVOU8qUuushKyDEs0wLXRqJo6KdMaRG2KVPBjcj7nDt59TDqMcuMm38eTkoNIBM_SrIhUMlPx6RC8NnLwtqv8ViLIXZNyblLGJuV3kzKNJj6bQoT7N-3_ov9xfQHFz3YZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3042436568</pqid></control><display><type>article</type><title>Micro-PIV study on the influence of viscosity on the dynamics of droplet impact onto a thin film</title><source>SpringerLink Journals - AutoHoldings</source><creator>Schubert, Stefan ; Steigerwald, Jonas ; Geppert, Anne K. ; Weigand, Bernhard ; Lamanna, Grazia</creator><creatorcontrib>Schubert, Stefan ; Steigerwald, Jonas ; Geppert, Anne K. ; Weigand, Bernhard ; Lamanna, Grazia</creatorcontrib><description>This work presents a systematic experimental study of droplet impact onto a wet substrate. Four different silicone oils are used, covering a range of Reynolds number between 116 &lt; Re &lt; 1106 at two different initial wall film heights. The objective is to characterize the temporal and radial evolution of the velocity field within the crown crater by means of micro-PIV. Our findings show that the velocity field has the structure of an axisymmetric stagnation point flow with decaying strength a ( t ). The latter exhibits an exponential decay and can be explained in terms of the exponential decay of the pressure force exerted by the impacting droplet onto the wall film. In this context, the commonly accepted functional dependence a ( t ) ∝ t - 1 represents only the first-order Taylor approximation of the exponential decay and has therefore only a limited temporal validity. The analysis also corroborates the existence of an inertial regime concerning the velocity field for Re &gt; 270 . This is not observed at lower Re numbers due to the increased pressure losses caused by the extensional (normal) strain during the radial spreading of the lamella. To validate these findings a holistic approach is chosen, which combines numerical results, analytical solutions and experimental data from literature. In particular, by using the continuity equation, it is shown that the experimental decay of the wall film height can be reconstructed from the velocity measurements. Consilience of results from different approaches provides a robust validation of the micro-PIV data obtained in this work. Graphical abstract</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-024-03800-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Axisymmetric flow ; Continuity equation ; Decay ; Droplets ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Exact solutions ; Fluid flow ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Lamella ; Pressure loss ; Research Article ; Reynolds number ; Robustness (mathematics) ; Stagnation point ; Substrates ; Thin films ; Velocity ; Velocity distribution</subject><ispartof>Experiments in fluids, 2024-05, Vol.65 (5), Article 69</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-10f2fd10d19fb0a187b1b2fd1d5c732b93c69066191f03efe1cdb295b04bf8543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00348-024-03800-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00348-024-03800-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Schubert, Stefan</creatorcontrib><creatorcontrib>Steigerwald, Jonas</creatorcontrib><creatorcontrib>Geppert, Anne K.</creatorcontrib><creatorcontrib>Weigand, Bernhard</creatorcontrib><creatorcontrib>Lamanna, Grazia</creatorcontrib><title>Micro-PIV study on the influence of viscosity on the dynamics of droplet impact onto a thin film</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>This work presents a systematic experimental study of droplet impact onto a wet substrate. Four different silicone oils are used, covering a range of Reynolds number between 116 &lt; Re &lt; 1106 at two different initial wall film heights. The objective is to characterize the temporal and radial evolution of the velocity field within the crown crater by means of micro-PIV. Our findings show that the velocity field has the structure of an axisymmetric stagnation point flow with decaying strength a ( t ). The latter exhibits an exponential decay and can be explained in terms of the exponential decay of the pressure force exerted by the impacting droplet onto the wall film. In this context, the commonly accepted functional dependence a ( t ) ∝ t - 1 represents only the first-order Taylor approximation of the exponential decay and has therefore only a limited temporal validity. The analysis also corroborates the existence of an inertial regime concerning the velocity field for Re &gt; 270 . This is not observed at lower Re numbers due to the increased pressure losses caused by the extensional (normal) strain during the radial spreading of the lamella. To validate these findings a holistic approach is chosen, which combines numerical results, analytical solutions and experimental data from literature. In particular, by using the continuity equation, it is shown that the experimental decay of the wall film height can be reconstructed from the velocity measurements. Consilience of results from different approaches provides a robust validation of the micro-PIV data obtained in this work. Graphical abstract</description><subject>Axisymmetric flow</subject><subject>Continuity equation</subject><subject>Decay</subject><subject>Droplets</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Lamella</subject><subject>Pressure loss</subject><subject>Research Article</subject><subject>Reynolds number</subject><subject>Robustness (mathematics)</subject><subject>Stagnation point</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLxDAUhYMoOD7-gKuA6-i9TfpayuBjYEQX6ja2aaIZ2qYmrTD_3owV3bm6cM93zuUeQs4QLhAgvwwAXBQMEsGAFwAs3SMLFDxhiCj2yQLyhDNRZOKQHIWwAcC0hGJBXu-t8o49rl5oGKdmS11Px3dNbW_aSfdKU2fopw3KBTv-qs22rzqrwk5svBtaPVLbDZUaIzE6WkXK9tTYtjshB6Zqgz79mcfk-eb6aXnH1g-3q-XVmimOYmQIJjENQoOlqaHCIq-x3m2aVOU8qUuushKyDEs0wLXRqJo6KdMaRG2KVPBjcj7nDt59TDqMcuMm38eTkoNIBM_SrIhUMlPx6RC8NnLwtqv8ViLIXZNyblLGJuV3kzKNJj6bQoT7N-3_ov9xfQHFz3YZ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Schubert, Stefan</creator><creator>Steigerwald, Jonas</creator><creator>Geppert, Anne K.</creator><creator>Weigand, Bernhard</creator><creator>Lamanna, Grazia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240501</creationdate><title>Micro-PIV study on the influence of viscosity on the dynamics of droplet impact onto a thin film</title><author>Schubert, Stefan ; Steigerwald, Jonas ; Geppert, Anne K. ; Weigand, Bernhard ; Lamanna, Grazia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-10f2fd10d19fb0a187b1b2fd1d5c732b93c69066191f03efe1cdb295b04bf8543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Axisymmetric flow</topic><topic>Continuity equation</topic><topic>Decay</topic><topic>Droplets</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Lamella</topic><topic>Pressure loss</topic><topic>Research Article</topic><topic>Reynolds number</topic><topic>Robustness (mathematics)</topic><topic>Stagnation point</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schubert, Stefan</creatorcontrib><creatorcontrib>Steigerwald, Jonas</creatorcontrib><creatorcontrib>Geppert, Anne K.</creatorcontrib><creatorcontrib>Weigand, Bernhard</creatorcontrib><creatorcontrib>Lamanna, Grazia</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schubert, Stefan</au><au>Steigerwald, Jonas</au><au>Geppert, Anne K.</au><au>Weigand, Bernhard</au><au>Lamanna, Grazia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro-PIV study on the influence of viscosity on the dynamics of droplet impact onto a thin film</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>65</volume><issue>5</issue><artnum>69</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>This work presents a systematic experimental study of droplet impact onto a wet substrate. Four different silicone oils are used, covering a range of Reynolds number between 116 &lt; Re &lt; 1106 at two different initial wall film heights. The objective is to characterize the temporal and radial evolution of the velocity field within the crown crater by means of micro-PIV. Our findings show that the velocity field has the structure of an axisymmetric stagnation point flow with decaying strength a ( t ). The latter exhibits an exponential decay and can be explained in terms of the exponential decay of the pressure force exerted by the impacting droplet onto the wall film. In this context, the commonly accepted functional dependence a ( t ) ∝ t - 1 represents only the first-order Taylor approximation of the exponential decay and has therefore only a limited temporal validity. The analysis also corroborates the existence of an inertial regime concerning the velocity field for Re &gt; 270 . This is not observed at lower Re numbers due to the increased pressure losses caused by the extensional (normal) strain during the radial spreading of the lamella. To validate these findings a holistic approach is chosen, which combines numerical results, analytical solutions and experimental data from literature. In particular, by using the continuity equation, it is shown that the experimental decay of the wall film height can be reconstructed from the velocity measurements. Consilience of results from different approaches provides a robust validation of the micro-PIV data obtained in this work. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-024-03800-5</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2024-05, Vol.65 (5), Article 69
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_journals_3042436568
source SpringerLink Journals - AutoHoldings
subjects Axisymmetric flow
Continuity equation
Decay
Droplets
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Exact solutions
Fluid flow
Fluid- and Aerodynamics
Heat and Mass Transfer
Lamella
Pressure loss
Research Article
Reynolds number
Robustness (mathematics)
Stagnation point
Substrates
Thin films
Velocity
Velocity distribution
title Micro-PIV study on the influence of viscosity on the dynamics of droplet impact onto a thin film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro-PIV%20study%20on%20the%20influence%20of%20viscosity%20on%20the%20dynamics%20of%20droplet%20impact%20onto%20a%20thin%20film&rft.jtitle=Experiments%20in%20fluids&rft.au=Schubert,%20Stefan&rft.date=2024-05-01&rft.volume=65&rft.issue=5&rft.artnum=69&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-024-03800-5&rft_dat=%3Cproquest_cross%3E3042436568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3042436568&rft_id=info:pmid/&rfr_iscdi=true