CNBCC: cubic non-uniform B-spline closed curve for arbitrary shape text detection

With the development of deep learning, the performance and efficiency of text detection in natural scenes have been significantly improved. Due to the irregular geometric shape of natural scene text, it is challenging to detect text of arbitrary shape. Most of the existing methods are regression-bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2024-05, Vol.40 (5), p.3023-3032
Hauptverfasser: Zhu, Chao, Yi, Benshun, Luo, Laigan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3032
container_issue 5
container_start_page 3023
container_title The Visual computer
container_volume 40
creator Zhu, Chao
Yi, Benshun
Luo, Laigan
description With the development of deep learning, the performance and efficiency of text detection in natural scenes have been significantly improved. Due to the irregular geometric shape of natural scene text, it is challenging to detect text of arbitrary shape. Most of the existing methods are regression-based or segmentation-based methods. This paper presents an efficient framework to detect arbitrary shape text instances by combining regression-based and segmentation-based methods. Specifically, we use cubic non-uniform B-spline closed curve to fit the boundaries of arbitrary-shaped text instances. By adopting the anchor-free method as the regression detector to obtain the coordinates of B-spline curve control points, and using the segmentation method to obtain the knot vector value, our method not only uses the detection efficiency of regression method, but also combines the insensitivity of segmentation method to arbitrary shape text to improve the accuracy of text detection. Experiments on ICAR2015, CTW1500 and total-text benchmarks, including regular shape and arbitrary shape scene text in natural images, demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1007/s00371-023-03005-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3041898178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3041898178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-2eba78fe410c1e8c14ffef816b99212e84298e75fee467c3415b3589cfedbbd93</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-AVcB19G82iTunOILBkXQdWjTG-3QaWvSiv57oxXc6epyud85l3MQOmb0lFGqziKlQjFCuSBUUJoRtYMWTApOuGDZLlpQpjThSpt9dBDjhqZdSbNAD8XdqijOsZuqxuGu78jUNb4PW7wicWibDrBr-wh1IsIb4HTCZaiaMZThA8eXcgA8wvuIaxjBjU3fHaI9X7YRjn7mEj1dXT4WN2R9f31bXKyJE1KNhENVKu1BMuoYaMek9-A1yytjOOOgJTcaVOYBZK6ShmWVyLRxHuqqqo1YopPZdwj96wRxtJt-Cl16aQWVTBudIv9H5UrkmieKz5QLfYwBvB1Cs00JLaP2q2A7F2xTwfa7YKuSSMyimODuGcKv9R-qT-lIfMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041673682</pqid></control><display><type>article</type><title>CNBCC: cubic non-uniform B-spline closed curve for arbitrary shape text detection</title><source>SpringerLink Journals</source><creator>Zhu, Chao ; Yi, Benshun ; Luo, Laigan</creator><creatorcontrib>Zhu, Chao ; Yi, Benshun ; Luo, Laigan</creatorcontrib><description>With the development of deep learning, the performance and efficiency of text detection in natural scenes have been significantly improved. Due to the irregular geometric shape of natural scene text, it is challenging to detect text of arbitrary shape. Most of the existing methods are regression-based or segmentation-based methods. This paper presents an efficient framework to detect arbitrary shape text instances by combining regression-based and segmentation-based methods. Specifically, we use cubic non-uniform B-spline closed curve to fit the boundaries of arbitrary-shaped text instances. By adopting the anchor-free method as the regression detector to obtain the coordinates of B-spline curve control points, and using the segmentation method to obtain the knot vector value, our method not only uses the detection efficiency of regression method, but also combines the insensitivity of segmentation method to arbitrary shape text to improve the accuracy of text detection. Experiments on ICAR2015, CTW1500 and total-text benchmarks, including regular shape and arbitrary shape scene text in natural images, demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-023-03005-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Artificial Intelligence ; B spline functions ; Computer Graphics ; Computer Science ; Deep learning ; Efficiency ; Image Processing and Computer Vision ; Methods ; Original Article ; Regression</subject><ispartof>The Visual computer, 2024-05, Vol.40 (5), p.3023-3032</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-2eba78fe410c1e8c14ffef816b99212e84298e75fee467c3415b3589cfedbbd93</citedby><cites>FETCH-LOGICAL-c347t-2eba78fe410c1e8c14ffef816b99212e84298e75fee467c3415b3589cfedbbd93</cites><orcidid>0000-0002-2818-9357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-023-03005-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00371-023-03005-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>Yi, Benshun</creatorcontrib><creatorcontrib>Luo, Laigan</creatorcontrib><title>CNBCC: cubic non-uniform B-spline closed curve for arbitrary shape text detection</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>With the development of deep learning, the performance and efficiency of text detection in natural scenes have been significantly improved. Due to the irregular geometric shape of natural scene text, it is challenging to detect text of arbitrary shape. Most of the existing methods are regression-based or segmentation-based methods. This paper presents an efficient framework to detect arbitrary shape text instances by combining regression-based and segmentation-based methods. Specifically, we use cubic non-uniform B-spline closed curve to fit the boundaries of arbitrary-shaped text instances. By adopting the anchor-free method as the regression detector to obtain the coordinates of B-spline curve control points, and using the segmentation method to obtain the knot vector value, our method not only uses the detection efficiency of regression method, but also combines the insensitivity of segmentation method to arbitrary shape text to improve the accuracy of text detection. Experiments on ICAR2015, CTW1500 and total-text benchmarks, including regular shape and arbitrary shape scene text in natural images, demonstrate the effectiveness of the proposed method.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>B spline functions</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Efficiency</subject><subject>Image Processing and Computer Vision</subject><subject>Methods</subject><subject>Original Article</subject><subject>Regression</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-AVcB19G82iTunOILBkXQdWjTG-3QaWvSiv57oxXc6epyud85l3MQOmb0lFGqziKlQjFCuSBUUJoRtYMWTApOuGDZLlpQpjThSpt9dBDjhqZdSbNAD8XdqijOsZuqxuGu78jUNb4PW7wicWibDrBr-wh1IsIb4HTCZaiaMZThA8eXcgA8wvuIaxjBjU3fHaI9X7YRjn7mEj1dXT4WN2R9f31bXKyJE1KNhENVKu1BMuoYaMek9-A1yytjOOOgJTcaVOYBZK6ShmWVyLRxHuqqqo1YopPZdwj96wRxtJt-Cl16aQWVTBudIv9H5UrkmieKz5QLfYwBvB1Cs00JLaP2q2A7F2xTwfa7YKuSSMyimODuGcKv9R-qT-lIfMw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhu, Chao</creator><creator>Yi, Benshun</creator><creator>Luo, Laigan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-2818-9357</orcidid></search><sort><creationdate>20240501</creationdate><title>CNBCC: cubic non-uniform B-spline closed curve for arbitrary shape text detection</title><author>Zhu, Chao ; Yi, Benshun ; Luo, Laigan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-2eba78fe410c1e8c14ffef816b99212e84298e75fee467c3415b3589cfedbbd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>B spline functions</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Efficiency</topic><topic>Image Processing and Computer Vision</topic><topic>Methods</topic><topic>Original Article</topic><topic>Regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>Yi, Benshun</creatorcontrib><creatorcontrib>Luo, Laigan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Chao</au><au>Yi, Benshun</au><au>Luo, Laigan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CNBCC: cubic non-uniform B-spline closed curve for arbitrary shape text detection</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>40</volume><issue>5</issue><spage>3023</spage><epage>3032</epage><pages>3023-3032</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>With the development of deep learning, the performance and efficiency of text detection in natural scenes have been significantly improved. Due to the irregular geometric shape of natural scene text, it is challenging to detect text of arbitrary shape. Most of the existing methods are regression-based or segmentation-based methods. This paper presents an efficient framework to detect arbitrary shape text instances by combining regression-based and segmentation-based methods. Specifically, we use cubic non-uniform B-spline closed curve to fit the boundaries of arbitrary-shaped text instances. By adopting the anchor-free method as the regression detector to obtain the coordinates of B-spline curve control points, and using the segmentation method to obtain the knot vector value, our method not only uses the detection efficiency of regression method, but also combines the insensitivity of segmentation method to arbitrary shape text to improve the accuracy of text detection. Experiments on ICAR2015, CTW1500 and total-text benchmarks, including regular shape and arbitrary shape scene text in natural images, demonstrate the effectiveness of the proposed method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-023-03005-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2818-9357</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2024-05, Vol.40 (5), p.3023-3032
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_3041898178
source SpringerLink Journals
subjects Accuracy
Artificial Intelligence
B spline functions
Computer Graphics
Computer Science
Deep learning
Efficiency
Image Processing and Computer Vision
Methods
Original Article
Regression
title CNBCC: cubic non-uniform B-spline closed curve for arbitrary shape text detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CNBCC:%20cubic%20non-uniform%20B-spline%20closed%20curve%20for%20arbitrary%20shape%20text%20detection&rft.jtitle=The%20Visual%20computer&rft.au=Zhu,%20Chao&rft.date=2024-05-01&rft.volume=40&rft.issue=5&rft.spage=3023&rft.epage=3032&rft.pages=3023-3032&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-023-03005-7&rft_dat=%3Cproquest_cross%3E3041898178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041673682&rft_id=info:pmid/&rfr_iscdi=true