CNBCC: cubic non-uniform B-spline closed curve for arbitrary shape text detection
With the development of deep learning, the performance and efficiency of text detection in natural scenes have been significantly improved. Due to the irregular geometric shape of natural scene text, it is challenging to detect text of arbitrary shape. Most of the existing methods are regression-bas...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2024-05, Vol.40 (5), p.3023-3032 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3032 |
---|---|
container_issue | 5 |
container_start_page | 3023 |
container_title | The Visual computer |
container_volume | 40 |
creator | Zhu, Chao Yi, Benshun Luo, Laigan |
description | With the development of deep learning, the performance and efficiency of text detection in natural scenes have been significantly improved. Due to the irregular geometric shape of natural scene text, it is challenging to detect text of arbitrary shape. Most of the existing methods are regression-based or segmentation-based methods. This paper presents an efficient framework to detect arbitrary shape text instances by combining regression-based and segmentation-based methods. Specifically, we use cubic non-uniform B-spline closed curve to fit the boundaries of arbitrary-shaped text instances. By adopting the anchor-free method as the regression detector to obtain the coordinates of B-spline curve control points, and using the segmentation method to obtain the knot vector value, our method not only uses the detection efficiency of regression method, but also combines the insensitivity of segmentation method to arbitrary shape text to improve the accuracy of text detection. Experiments on ICAR2015, CTW1500 and total-text benchmarks, including regular shape and arbitrary shape scene text in natural images, demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1007/s00371-023-03005-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3041898178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3041898178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-2eba78fe410c1e8c14ffef816b99212e84298e75fee467c3415b3589cfedbbd93</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-AVcB19G82iTunOILBkXQdWjTG-3QaWvSiv57oxXc6epyud85l3MQOmb0lFGqziKlQjFCuSBUUJoRtYMWTApOuGDZLlpQpjThSpt9dBDjhqZdSbNAD8XdqijOsZuqxuGu78jUNb4PW7wicWibDrBr-wh1IsIb4HTCZaiaMZThA8eXcgA8wvuIaxjBjU3fHaI9X7YRjn7mEj1dXT4WN2R9f31bXKyJE1KNhENVKu1BMuoYaMek9-A1yytjOOOgJTcaVOYBZK6ShmWVyLRxHuqqqo1YopPZdwj96wRxtJt-Cl16aQWVTBudIv9H5UrkmieKz5QLfYwBvB1Cs00JLaP2q2A7F2xTwfa7YKuSSMyimODuGcKv9R-qT-lIfMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041673682</pqid></control><display><type>article</type><title>CNBCC: cubic non-uniform B-spline closed curve for arbitrary shape text detection</title><source>SpringerLink Journals</source><creator>Zhu, Chao ; Yi, Benshun ; Luo, Laigan</creator><creatorcontrib>Zhu, Chao ; Yi, Benshun ; Luo, Laigan</creatorcontrib><description>With the development of deep learning, the performance and efficiency of text detection in natural scenes have been significantly improved. Due to the irregular geometric shape of natural scene text, it is challenging to detect text of arbitrary shape. Most of the existing methods are regression-based or segmentation-based methods. This paper presents an efficient framework to detect arbitrary shape text instances by combining regression-based and segmentation-based methods. Specifically, we use cubic non-uniform B-spline closed curve to fit the boundaries of arbitrary-shaped text instances. By adopting the anchor-free method as the regression detector to obtain the coordinates of B-spline curve control points, and using the segmentation method to obtain the knot vector value, our method not only uses the detection efficiency of regression method, but also combines the insensitivity of segmentation method to arbitrary shape text to improve the accuracy of text detection. Experiments on ICAR2015, CTW1500 and total-text benchmarks, including regular shape and arbitrary shape scene text in natural images, demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-023-03005-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Artificial Intelligence ; B spline functions ; Computer Graphics ; Computer Science ; Deep learning ; Efficiency ; Image Processing and Computer Vision ; Methods ; Original Article ; Regression</subject><ispartof>The Visual computer, 2024-05, Vol.40 (5), p.3023-3032</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-2eba78fe410c1e8c14ffef816b99212e84298e75fee467c3415b3589cfedbbd93</citedby><cites>FETCH-LOGICAL-c347t-2eba78fe410c1e8c14ffef816b99212e84298e75fee467c3415b3589cfedbbd93</cites><orcidid>0000-0002-2818-9357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-023-03005-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00371-023-03005-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>Yi, Benshun</creatorcontrib><creatorcontrib>Luo, Laigan</creatorcontrib><title>CNBCC: cubic non-uniform B-spline closed curve for arbitrary shape text detection</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>With the development of deep learning, the performance and efficiency of text detection in natural scenes have been significantly improved. Due to the irregular geometric shape of natural scene text, it is challenging to detect text of arbitrary shape. Most of the existing methods are regression-based or segmentation-based methods. This paper presents an efficient framework to detect arbitrary shape text instances by combining regression-based and segmentation-based methods. Specifically, we use cubic non-uniform B-spline closed curve to fit the boundaries of arbitrary-shaped text instances. By adopting the anchor-free method as the regression detector to obtain the coordinates of B-spline curve control points, and using the segmentation method to obtain the knot vector value, our method not only uses the detection efficiency of regression method, but also combines the insensitivity of segmentation method to arbitrary shape text to improve the accuracy of text detection. Experiments on ICAR2015, CTW1500 and total-text benchmarks, including regular shape and arbitrary shape scene text in natural images, demonstrate the effectiveness of the proposed method.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>B spline functions</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Efficiency</subject><subject>Image Processing and Computer Vision</subject><subject>Methods</subject><subject>Original Article</subject><subject>Regression</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-AVcB19G82iTunOILBkXQdWjTG-3QaWvSiv57oxXc6epyud85l3MQOmb0lFGqziKlQjFCuSBUUJoRtYMWTApOuGDZLlpQpjThSpt9dBDjhqZdSbNAD8XdqijOsZuqxuGu78jUNb4PW7wicWibDrBr-wh1IsIb4HTCZaiaMZThA8eXcgA8wvuIaxjBjU3fHaI9X7YRjn7mEj1dXT4WN2R9f31bXKyJE1KNhENVKu1BMuoYaMek9-A1yytjOOOgJTcaVOYBZK6ShmWVyLRxHuqqqo1YopPZdwj96wRxtJt-Cl16aQWVTBudIv9H5UrkmieKz5QLfYwBvB1Cs00JLaP2q2A7F2xTwfa7YKuSSMyimODuGcKv9R-qT-lIfMw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhu, Chao</creator><creator>Yi, Benshun</creator><creator>Luo, Laigan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-2818-9357</orcidid></search><sort><creationdate>20240501</creationdate><title>CNBCC: cubic non-uniform B-spline closed curve for arbitrary shape text detection</title><author>Zhu, Chao ; Yi, Benshun ; Luo, Laigan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-2eba78fe410c1e8c14ffef816b99212e84298e75fee467c3415b3589cfedbbd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>B spline functions</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Efficiency</topic><topic>Image Processing and Computer Vision</topic><topic>Methods</topic><topic>Original Article</topic><topic>Regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>Yi, Benshun</creatorcontrib><creatorcontrib>Luo, Laigan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Chao</au><au>Yi, Benshun</au><au>Luo, Laigan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CNBCC: cubic non-uniform B-spline closed curve for arbitrary shape text detection</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>40</volume><issue>5</issue><spage>3023</spage><epage>3032</epage><pages>3023-3032</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>With the development of deep learning, the performance and efficiency of text detection in natural scenes have been significantly improved. Due to the irregular geometric shape of natural scene text, it is challenging to detect text of arbitrary shape. Most of the existing methods are regression-based or segmentation-based methods. This paper presents an efficient framework to detect arbitrary shape text instances by combining regression-based and segmentation-based methods. Specifically, we use cubic non-uniform B-spline closed curve to fit the boundaries of arbitrary-shaped text instances. By adopting the anchor-free method as the regression detector to obtain the coordinates of B-spline curve control points, and using the segmentation method to obtain the knot vector value, our method not only uses the detection efficiency of regression method, but also combines the insensitivity of segmentation method to arbitrary shape text to improve the accuracy of text detection. Experiments on ICAR2015, CTW1500 and total-text benchmarks, including regular shape and arbitrary shape scene text in natural images, demonstrate the effectiveness of the proposed method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-023-03005-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2818-9357</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2024-05, Vol.40 (5), p.3023-3032 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_3041898178 |
source | SpringerLink Journals |
subjects | Accuracy Artificial Intelligence B spline functions Computer Graphics Computer Science Deep learning Efficiency Image Processing and Computer Vision Methods Original Article Regression |
title | CNBCC: cubic non-uniform B-spline closed curve for arbitrary shape text detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CNBCC:%20cubic%20non-uniform%20B-spline%20closed%20curve%20for%20arbitrary%20shape%20text%20detection&rft.jtitle=The%20Visual%20computer&rft.au=Zhu,%20Chao&rft.date=2024-05-01&rft.volume=40&rft.issue=5&rft.spage=3023&rft.epage=3032&rft.pages=3023-3032&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-023-03005-7&rft_dat=%3Cproquest_cross%3E3041898178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041673682&rft_id=info:pmid/&rfr_iscdi=true |