Gravitational wave luminosity distance-weighted anisotropies

Measurements of the luminosity distance of propagating gravitational waves can provide invaluable information on the geometry and content of our Universe. Due to the clustering of cosmic structures, in realistic situations we need to average the luminosity distance of events coming from patches insi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Begnoni, A, L Valbusa Dall'Armi, Bertacca, D, Raccanelli, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Begnoni, A
L Valbusa Dall'Armi
Bertacca, D
Raccanelli, A
description Measurements of the luminosity distance of propagating gravitational waves can provide invaluable information on the geometry and content of our Universe. Due to the clustering of cosmic structures, in realistic situations we need to average the luminosity distance of events coming from patches inside a volume. In this work we evaluate, in a gauge-invariant and fully-relativistic treatment, the impact of cosmological perturbations on such averaging process. We find that clustering, lensing and peculiar velocity effects impact estimates for future detectors such as Einstein Telescope, Cosmic Explorer, the Big Bang Observer and DECIGO. The signal-to-noise ratio of the angular power spectrum of the average luminosity distance over all the redshift bins is 17 in the case of binary black holes detected by Einstein Telescope and Cosmic Explorer. We also provide fitting formulas for the corrections to the average luminosity distance due to general relativistic effects.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3041598005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3041598005</sourcerecordid><originalsourceid>FETCH-proquest_journals_30415980053</originalsourceid><addsrcrecordid>eNqNzE0KwjAQQOEgCBbtHQKuC2nSaAV34s8B3JdgpzqlJjUzbfH2uvAArt7m481Eoo3Js7LQeiFSolYppTdbba1JxP4c3YjsGIN3nZzcCLIbnugDIb9ljcTO3yCbAO8Phlo6jxQ4hh6BVmLeuI4g_XUp1qfj9XDJ-hheAxBXbRji90uVUUVud6VS1vynPtlkONU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041598005</pqid></control><display><type>article</type><title>Gravitational wave luminosity distance-weighted anisotropies</title><source>Free E- Journals</source><creator>Begnoni, A ; L Valbusa Dall'Armi ; Bertacca, D ; Raccanelli, A</creator><creatorcontrib>Begnoni, A ; L Valbusa Dall'Armi ; Bertacca, D ; Raccanelli, A</creatorcontrib><description>Measurements of the luminosity distance of propagating gravitational waves can provide invaluable information on the geometry and content of our Universe. Due to the clustering of cosmic structures, in realistic situations we need to average the luminosity distance of events coming from patches inside a volume. In this work we evaluate, in a gauge-invariant and fully-relativistic treatment, the impact of cosmological perturbations on such averaging process. We find that clustering, lensing and peculiar velocity effects impact estimates for future detectors such as Einstein Telescope, Cosmic Explorer, the Big Bang Observer and DECIGO. The signal-to-noise ratio of the angular power spectrum of the average luminosity distance over all the redshift bins is 17 in the case of binary black holes detected by Einstein Telescope and Cosmic Explorer. We also provide fitting formulas for the corrections to the average luminosity distance due to general relativistic effects.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Big bang cosmology ; Black holes ; Clustering ; Gravitational waves ; Luminosity ; Red shift ; Relativistic effects ; Signal to noise ratio ; Wave propagation</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Begnoni, A</creatorcontrib><creatorcontrib>L Valbusa Dall'Armi</creatorcontrib><creatorcontrib>Bertacca, D</creatorcontrib><creatorcontrib>Raccanelli, A</creatorcontrib><title>Gravitational wave luminosity distance-weighted anisotropies</title><title>arXiv.org</title><description>Measurements of the luminosity distance of propagating gravitational waves can provide invaluable information on the geometry and content of our Universe. Due to the clustering of cosmic structures, in realistic situations we need to average the luminosity distance of events coming from patches inside a volume. In this work we evaluate, in a gauge-invariant and fully-relativistic treatment, the impact of cosmological perturbations on such averaging process. We find that clustering, lensing and peculiar velocity effects impact estimates for future detectors such as Einstein Telescope, Cosmic Explorer, the Big Bang Observer and DECIGO. The signal-to-noise ratio of the angular power spectrum of the average luminosity distance over all the redshift bins is 17 in the case of binary black holes detected by Einstein Telescope and Cosmic Explorer. We also provide fitting formulas for the corrections to the average luminosity distance due to general relativistic effects.</description><subject>Big bang cosmology</subject><subject>Black holes</subject><subject>Clustering</subject><subject>Gravitational waves</subject><subject>Luminosity</subject><subject>Red shift</subject><subject>Relativistic effects</subject><subject>Signal to noise ratio</subject><subject>Wave propagation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzE0KwjAQQOEgCBbtHQKuC2nSaAV34s8B3JdgpzqlJjUzbfH2uvAArt7m481Eoo3Js7LQeiFSolYppTdbba1JxP4c3YjsGIN3nZzcCLIbnugDIb9ljcTO3yCbAO8Phlo6jxQ4hh6BVmLeuI4g_XUp1qfj9XDJ-hheAxBXbRji90uVUUVud6VS1vynPtlkONU</recordid><startdate>20241021</startdate><enddate>20241021</enddate><creator>Begnoni, A</creator><creator>L Valbusa Dall'Armi</creator><creator>Bertacca, D</creator><creator>Raccanelli, A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241021</creationdate><title>Gravitational wave luminosity distance-weighted anisotropies</title><author>Begnoni, A ; L Valbusa Dall'Armi ; Bertacca, D ; Raccanelli, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30415980053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Big bang cosmology</topic><topic>Black holes</topic><topic>Clustering</topic><topic>Gravitational waves</topic><topic>Luminosity</topic><topic>Red shift</topic><topic>Relativistic effects</topic><topic>Signal to noise ratio</topic><topic>Wave propagation</topic><toplevel>online_resources</toplevel><creatorcontrib>Begnoni, A</creatorcontrib><creatorcontrib>L Valbusa Dall'Armi</creatorcontrib><creatorcontrib>Bertacca, D</creatorcontrib><creatorcontrib>Raccanelli, A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Begnoni, A</au><au>L Valbusa Dall'Armi</au><au>Bertacca, D</au><au>Raccanelli, A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Gravitational wave luminosity distance-weighted anisotropies</atitle><jtitle>arXiv.org</jtitle><date>2024-10-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Measurements of the luminosity distance of propagating gravitational waves can provide invaluable information on the geometry and content of our Universe. Due to the clustering of cosmic structures, in realistic situations we need to average the luminosity distance of events coming from patches inside a volume. In this work we evaluate, in a gauge-invariant and fully-relativistic treatment, the impact of cosmological perturbations on such averaging process. We find that clustering, lensing and peculiar velocity effects impact estimates for future detectors such as Einstein Telescope, Cosmic Explorer, the Big Bang Observer and DECIGO. The signal-to-noise ratio of the angular power spectrum of the average luminosity distance over all the redshift bins is 17 in the case of binary black holes detected by Einstein Telescope and Cosmic Explorer. We also provide fitting formulas for the corrections to the average luminosity distance due to general relativistic effects.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3041598005
source Free E- Journals
subjects Big bang cosmology
Black holes
Clustering
Gravitational waves
Luminosity
Red shift
Relativistic effects
Signal to noise ratio
Wave propagation
title Gravitational wave luminosity distance-weighted anisotropies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Gravitational%20wave%20luminosity%20distance-weighted%20anisotropies&rft.jtitle=arXiv.org&rft.au=Begnoni,%20A&rft.date=2024-10-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3041598005%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041598005&rft_id=info:pmid/&rfr_iscdi=true