Sensor Network Localization via Riemannian Conjugate Gradient and Rank Reduction
This paper addresses the Sensor Network Localization (SNL) problem using received signal strength. The SNL is formulated as an Euclidean Distance Matrix Completion (EDMC) problem under the unit ball sample model. Using the Burer-Monteiro factorization type cost function, the EDMC is solved by Rieman...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2024-01, Vol.72, p.1-16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on signal processing |
container_volume | 72 |
creator | Li, Yicheng Sun, Xinghua |
description | This paper addresses the Sensor Network Localization (SNL) problem using received signal strength. The SNL is formulated as an Euclidean Distance Matrix Completion (EDMC) problem under the unit ball sample model. Using the Burer-Monteiro factorization type cost function, the EDMC is solved by Riemannian conjugate gradient with Hager-Zhang line search method on a quotient manifold. A "rank reduction" pre-process is proposed for proper initialization and to achieve global convergence with high probability. Simulations on a synthetic scene show that our approach attains better localization accuracy and is computationally efficient compared to several baseline methods. Characterization of a small local basin of attraction around the global optima of the s-stress function under Bernoulli sampling rule and incoherence matrix completion framework is conducted for the first time. Theoretical result conjectures that the Euclidean distance problem with a structure-less sample mask can be effectively handled using spectral initialization followed by vanilla first-order methods. This preliminary analysis, along with the aforementioned numerical accomplishments, provides insights into revealing the landscape of the s-stress function and may stimulate the design of simpler algorithms to tackle the non-convex formulation of general EDMC problems. |
doi_str_mv | 10.1109/TSP.2024.3378378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3041510483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10474485</ieee_id><sourcerecordid>3041510483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-8814a03da8a212d114a31e7953ef29c44c536edbb143e5a22a8602e89bf002a33</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvHjwseE7drySboxStQtHSVvC2TJOJbD92626i6K83oT0IAzMDzzsDDyHXnI04Z8XdcjEbCSbUSMpcd3VCBrxQPGEqz067maUySXX-fk4uYlwzxpUqsgGZLdBFH-gLNt8-bOjUl7C1v9BY7-iXBTq3uAPnLDg69m7dfkCDdBKgsugaCq6ic3AbOseqLfvQJTmrYRvx6tiH5O3xYTl-Sqavk-fx_TQpRSGaRGuugMkKNAguKt5tkmNepBJrUZRKlanMsFqtuJKYghCgMyZQF6uaMQFSDsnt4e4--M8WY2PWvg2ue2kkUzzlTOmeYgeqDD7GgLXZB7uD8GM4M70303kzvTdz9NZFbg4Ri4j_cJUrpVP5B8-gaOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041510483</pqid></control><display><type>article</type><title>Sensor Network Localization via Riemannian Conjugate Gradient and Rank Reduction</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yicheng ; Sun, Xinghua</creator><creatorcontrib>Li, Yicheng ; Sun, Xinghua</creatorcontrib><description>This paper addresses the Sensor Network Localization (SNL) problem using received signal strength. The SNL is formulated as an Euclidean Distance Matrix Completion (EDMC) problem under the unit ball sample model. Using the Burer-Monteiro factorization type cost function, the EDMC is solved by Riemannian conjugate gradient with Hager-Zhang line search method on a quotient manifold. A "rank reduction" pre-process is proposed for proper initialization and to achieve global convergence with high probability. Simulations on a synthetic scene show that our approach attains better localization accuracy and is computationally efficient compared to several baseline methods. Characterization of a small local basin of attraction around the global optima of the s-stress function under Bernoulli sampling rule and incoherence matrix completion framework is conducted for the first time. Theoretical result conjectures that the Euclidean distance problem with a structure-less sample mask can be effectively handled using spectral initialization followed by vanilla first-order methods. This preliminary analysis, along with the aforementioned numerical accomplishments, provides insights into revealing the landscape of the s-stress function and may stimulate the design of simpler algorithms to tackle the non-convex formulation of general EDMC problems.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2024.3378378</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Complexity theory ; Conjugate gradient method ; Cost function ; Euclidean distance ; Euclidean distance matrix completion ; Euclidean geometry ; Incoherence ; Localization ; Location awareness ; matrix factorization ; Minimization ; over-parameterization ; Riemannian optimization ; sensor network localization ; Signal processing algorithms ; Signal strength ; Stress functions ; Symmetric matrices ; Vectors</subject><ispartof>IEEE transactions on signal processing, 2024-01, Vol.72, p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-8814a03da8a212d114a31e7953ef29c44c536edbb143e5a22a8602e89bf002a33</citedby><cites>FETCH-LOGICAL-c292t-8814a03da8a212d114a31e7953ef29c44c536edbb143e5a22a8602e89bf002a33</cites><orcidid>0009-0005-7973-4182 ; 0000-0003-0621-1469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10474485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10474485$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yicheng</creatorcontrib><creatorcontrib>Sun, Xinghua</creatorcontrib><title>Sensor Network Localization via Riemannian Conjugate Gradient and Rank Reduction</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper addresses the Sensor Network Localization (SNL) problem using received signal strength. The SNL is formulated as an Euclidean Distance Matrix Completion (EDMC) problem under the unit ball sample model. Using the Burer-Monteiro factorization type cost function, the EDMC is solved by Riemannian conjugate gradient with Hager-Zhang line search method on a quotient manifold. A "rank reduction" pre-process is proposed for proper initialization and to achieve global convergence with high probability. Simulations on a synthetic scene show that our approach attains better localization accuracy and is computationally efficient compared to several baseline methods. Characterization of a small local basin of attraction around the global optima of the s-stress function under Bernoulli sampling rule and incoherence matrix completion framework is conducted for the first time. Theoretical result conjectures that the Euclidean distance problem with a structure-less sample mask can be effectively handled using spectral initialization followed by vanilla first-order methods. This preliminary analysis, along with the aforementioned numerical accomplishments, provides insights into revealing the landscape of the s-stress function and may stimulate the design of simpler algorithms to tackle the non-convex formulation of general EDMC problems.</description><subject>Algorithms</subject><subject>Complexity theory</subject><subject>Conjugate gradient method</subject><subject>Cost function</subject><subject>Euclidean distance</subject><subject>Euclidean distance matrix completion</subject><subject>Euclidean geometry</subject><subject>Incoherence</subject><subject>Localization</subject><subject>Location awareness</subject><subject>matrix factorization</subject><subject>Minimization</subject><subject>over-parameterization</subject><subject>Riemannian optimization</subject><subject>sensor network localization</subject><subject>Signal processing algorithms</subject><subject>Signal strength</subject><subject>Stress functions</subject><subject>Symmetric matrices</subject><subject>Vectors</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvHjwseE7drySboxStQtHSVvC2TJOJbD92626i6K83oT0IAzMDzzsDDyHXnI04Z8XdcjEbCSbUSMpcd3VCBrxQPGEqz067maUySXX-fk4uYlwzxpUqsgGZLdBFH-gLNt8-bOjUl7C1v9BY7-iXBTq3uAPnLDg69m7dfkCDdBKgsugaCq6ic3AbOseqLfvQJTmrYRvx6tiH5O3xYTl-Sqavk-fx_TQpRSGaRGuugMkKNAguKt5tkmNepBJrUZRKlanMsFqtuJKYghCgMyZQF6uaMQFSDsnt4e4--M8WY2PWvg2ue2kkUzzlTOmeYgeqDD7GgLXZB7uD8GM4M70303kzvTdz9NZFbg4Ri4j_cJUrpVP5B8-gaOI</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Li, Yicheng</creator><creator>Sun, Xinghua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0005-7973-4182</orcidid><orcidid>https://orcid.org/0000-0003-0621-1469</orcidid></search><sort><creationdate>20240101</creationdate><title>Sensor Network Localization via Riemannian Conjugate Gradient and Rank Reduction</title><author>Li, Yicheng ; Sun, Xinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-8814a03da8a212d114a31e7953ef29c44c536edbb143e5a22a8602e89bf002a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Complexity theory</topic><topic>Conjugate gradient method</topic><topic>Cost function</topic><topic>Euclidean distance</topic><topic>Euclidean distance matrix completion</topic><topic>Euclidean geometry</topic><topic>Incoherence</topic><topic>Localization</topic><topic>Location awareness</topic><topic>matrix factorization</topic><topic>Minimization</topic><topic>over-parameterization</topic><topic>Riemannian optimization</topic><topic>sensor network localization</topic><topic>Signal processing algorithms</topic><topic>Signal strength</topic><topic>Stress functions</topic><topic>Symmetric matrices</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yicheng</creatorcontrib><creatorcontrib>Sun, Xinghua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yicheng</au><au>Sun, Xinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensor Network Localization via Riemannian Conjugate Gradient and Rank Reduction</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>72</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper addresses the Sensor Network Localization (SNL) problem using received signal strength. The SNL is formulated as an Euclidean Distance Matrix Completion (EDMC) problem under the unit ball sample model. Using the Burer-Monteiro factorization type cost function, the EDMC is solved by Riemannian conjugate gradient with Hager-Zhang line search method on a quotient manifold. A "rank reduction" pre-process is proposed for proper initialization and to achieve global convergence with high probability. Simulations on a synthetic scene show that our approach attains better localization accuracy and is computationally efficient compared to several baseline methods. Characterization of a small local basin of attraction around the global optima of the s-stress function under Bernoulli sampling rule and incoherence matrix completion framework is conducted for the first time. Theoretical result conjectures that the Euclidean distance problem with a structure-less sample mask can be effectively handled using spectral initialization followed by vanilla first-order methods. This preliminary analysis, along with the aforementioned numerical accomplishments, provides insights into revealing the landscape of the s-stress function and may stimulate the design of simpler algorithms to tackle the non-convex formulation of general EDMC problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2024.3378378</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0005-7973-4182</orcidid><orcidid>https://orcid.org/0000-0003-0621-1469</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2024-01, Vol.72, p.1-16 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_3041510483 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Complexity theory Conjugate gradient method Cost function Euclidean distance Euclidean distance matrix completion Euclidean geometry Incoherence Localization Location awareness matrix factorization Minimization over-parameterization Riemannian optimization sensor network localization Signal processing algorithms Signal strength Stress functions Symmetric matrices Vectors |
title | Sensor Network Localization via Riemannian Conjugate Gradient and Rank Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensor%20Network%20Localization%20via%20Riemannian%20Conjugate%20Gradient%20and%20Rank%20Reduction&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Li,%20Yicheng&rft.date=2024-01-01&rft.volume=72&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2024.3378378&rft_dat=%3Cproquest_RIE%3E3041510483%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041510483&rft_id=info:pmid/&rft_ieee_id=10474485&rfr_iscdi=true |