Sensor Network Localization via Riemannian Conjugate Gradient and Rank Reduction

This paper addresses the Sensor Network Localization (SNL) problem using received signal strength. The SNL is formulated as an Euclidean Distance Matrix Completion (EDMC) problem under the unit ball sample model. Using the Burer-Monteiro factorization type cost function, the EDMC is solved by Rieman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2024-01, Vol.72, p.1-16
Hauptverfasser: Li, Yicheng, Sun, Xinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue
container_start_page 1
container_title IEEE transactions on signal processing
container_volume 72
creator Li, Yicheng
Sun, Xinghua
description This paper addresses the Sensor Network Localization (SNL) problem using received signal strength. The SNL is formulated as an Euclidean Distance Matrix Completion (EDMC) problem under the unit ball sample model. Using the Burer-Monteiro factorization type cost function, the EDMC is solved by Riemannian conjugate gradient with Hager-Zhang line search method on a quotient manifold. A "rank reduction" pre-process is proposed for proper initialization and to achieve global convergence with high probability. Simulations on a synthetic scene show that our approach attains better localization accuracy and is computationally efficient compared to several baseline methods. Characterization of a small local basin of attraction around the global optima of the s-stress function under Bernoulli sampling rule and incoherence matrix completion framework is conducted for the first time. Theoretical result conjectures that the Euclidean distance problem with a structure-less sample mask can be effectively handled using spectral initialization followed by vanilla first-order methods. This preliminary analysis, along with the aforementioned numerical accomplishments, provides insights into revealing the landscape of the s-stress function and may stimulate the design of simpler algorithms to tackle the non-convex formulation of general EDMC problems.
doi_str_mv 10.1109/TSP.2024.3378378
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3041510483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10474485</ieee_id><sourcerecordid>3041510483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-8814a03da8a212d114a31e7953ef29c44c536edbb143e5a22a8602e89bf002a33</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvHjwseE7drySboxStQtHSVvC2TJOJbD92626i6K83oT0IAzMDzzsDDyHXnI04Z8XdcjEbCSbUSMpcd3VCBrxQPGEqz067maUySXX-fk4uYlwzxpUqsgGZLdBFH-gLNt8-bOjUl7C1v9BY7-iXBTq3uAPnLDg69m7dfkCDdBKgsugaCq6ic3AbOseqLfvQJTmrYRvx6tiH5O3xYTl-Sqavk-fx_TQpRSGaRGuugMkKNAguKt5tkmNepBJrUZRKlanMsFqtuJKYghCgMyZQF6uaMQFSDsnt4e4--M8WY2PWvg2ue2kkUzzlTOmeYgeqDD7GgLXZB7uD8GM4M70303kzvTdz9NZFbg4Ri4j_cJUrpVP5B8-gaOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041510483</pqid></control><display><type>article</type><title>Sensor Network Localization via Riemannian Conjugate Gradient and Rank Reduction</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yicheng ; Sun, Xinghua</creator><creatorcontrib>Li, Yicheng ; Sun, Xinghua</creatorcontrib><description>This paper addresses the Sensor Network Localization (SNL) problem using received signal strength. The SNL is formulated as an Euclidean Distance Matrix Completion (EDMC) problem under the unit ball sample model. Using the Burer-Monteiro factorization type cost function, the EDMC is solved by Riemannian conjugate gradient with Hager-Zhang line search method on a quotient manifold. A "rank reduction" pre-process is proposed for proper initialization and to achieve global convergence with high probability. Simulations on a synthetic scene show that our approach attains better localization accuracy and is computationally efficient compared to several baseline methods. Characterization of a small local basin of attraction around the global optima of the s-stress function under Bernoulli sampling rule and incoherence matrix completion framework is conducted for the first time. Theoretical result conjectures that the Euclidean distance problem with a structure-less sample mask can be effectively handled using spectral initialization followed by vanilla first-order methods. This preliminary analysis, along with the aforementioned numerical accomplishments, provides insights into revealing the landscape of the s-stress function and may stimulate the design of simpler algorithms to tackle the non-convex formulation of general EDMC problems.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2024.3378378</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Complexity theory ; Conjugate gradient method ; Cost function ; Euclidean distance ; Euclidean distance matrix completion ; Euclidean geometry ; Incoherence ; Localization ; Location awareness ; matrix factorization ; Minimization ; over-parameterization ; Riemannian optimization ; sensor network localization ; Signal processing algorithms ; Signal strength ; Stress functions ; Symmetric matrices ; Vectors</subject><ispartof>IEEE transactions on signal processing, 2024-01, Vol.72, p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-8814a03da8a212d114a31e7953ef29c44c536edbb143e5a22a8602e89bf002a33</citedby><cites>FETCH-LOGICAL-c292t-8814a03da8a212d114a31e7953ef29c44c536edbb143e5a22a8602e89bf002a33</cites><orcidid>0009-0005-7973-4182 ; 0000-0003-0621-1469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10474485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10474485$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yicheng</creatorcontrib><creatorcontrib>Sun, Xinghua</creatorcontrib><title>Sensor Network Localization via Riemannian Conjugate Gradient and Rank Reduction</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper addresses the Sensor Network Localization (SNL) problem using received signal strength. The SNL is formulated as an Euclidean Distance Matrix Completion (EDMC) problem under the unit ball sample model. Using the Burer-Monteiro factorization type cost function, the EDMC is solved by Riemannian conjugate gradient with Hager-Zhang line search method on a quotient manifold. A "rank reduction" pre-process is proposed for proper initialization and to achieve global convergence with high probability. Simulations on a synthetic scene show that our approach attains better localization accuracy and is computationally efficient compared to several baseline methods. Characterization of a small local basin of attraction around the global optima of the s-stress function under Bernoulli sampling rule and incoherence matrix completion framework is conducted for the first time. Theoretical result conjectures that the Euclidean distance problem with a structure-less sample mask can be effectively handled using spectral initialization followed by vanilla first-order methods. This preliminary analysis, along with the aforementioned numerical accomplishments, provides insights into revealing the landscape of the s-stress function and may stimulate the design of simpler algorithms to tackle the non-convex formulation of general EDMC problems.</description><subject>Algorithms</subject><subject>Complexity theory</subject><subject>Conjugate gradient method</subject><subject>Cost function</subject><subject>Euclidean distance</subject><subject>Euclidean distance matrix completion</subject><subject>Euclidean geometry</subject><subject>Incoherence</subject><subject>Localization</subject><subject>Location awareness</subject><subject>matrix factorization</subject><subject>Minimization</subject><subject>over-parameterization</subject><subject>Riemannian optimization</subject><subject>sensor network localization</subject><subject>Signal processing algorithms</subject><subject>Signal strength</subject><subject>Stress functions</subject><subject>Symmetric matrices</subject><subject>Vectors</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvHjwseE7drySboxStQtHSVvC2TJOJbD92626i6K83oT0IAzMDzzsDDyHXnI04Z8XdcjEbCSbUSMpcd3VCBrxQPGEqz067maUySXX-fk4uYlwzxpUqsgGZLdBFH-gLNt8-bOjUl7C1v9BY7-iXBTq3uAPnLDg69m7dfkCDdBKgsugaCq6ic3AbOseqLfvQJTmrYRvx6tiH5O3xYTl-Sqavk-fx_TQpRSGaRGuugMkKNAguKt5tkmNepBJrUZRKlanMsFqtuJKYghCgMyZQF6uaMQFSDsnt4e4--M8WY2PWvg2ue2kkUzzlTOmeYgeqDD7GgLXZB7uD8GM4M70303kzvTdz9NZFbg4Ri4j_cJUrpVP5B8-gaOI</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Li, Yicheng</creator><creator>Sun, Xinghua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0005-7973-4182</orcidid><orcidid>https://orcid.org/0000-0003-0621-1469</orcidid></search><sort><creationdate>20240101</creationdate><title>Sensor Network Localization via Riemannian Conjugate Gradient and Rank Reduction</title><author>Li, Yicheng ; Sun, Xinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-8814a03da8a212d114a31e7953ef29c44c536edbb143e5a22a8602e89bf002a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Complexity theory</topic><topic>Conjugate gradient method</topic><topic>Cost function</topic><topic>Euclidean distance</topic><topic>Euclidean distance matrix completion</topic><topic>Euclidean geometry</topic><topic>Incoherence</topic><topic>Localization</topic><topic>Location awareness</topic><topic>matrix factorization</topic><topic>Minimization</topic><topic>over-parameterization</topic><topic>Riemannian optimization</topic><topic>sensor network localization</topic><topic>Signal processing algorithms</topic><topic>Signal strength</topic><topic>Stress functions</topic><topic>Symmetric matrices</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yicheng</creatorcontrib><creatorcontrib>Sun, Xinghua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yicheng</au><au>Sun, Xinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensor Network Localization via Riemannian Conjugate Gradient and Rank Reduction</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>72</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper addresses the Sensor Network Localization (SNL) problem using received signal strength. The SNL is formulated as an Euclidean Distance Matrix Completion (EDMC) problem under the unit ball sample model. Using the Burer-Monteiro factorization type cost function, the EDMC is solved by Riemannian conjugate gradient with Hager-Zhang line search method on a quotient manifold. A "rank reduction" pre-process is proposed for proper initialization and to achieve global convergence with high probability. Simulations on a synthetic scene show that our approach attains better localization accuracy and is computationally efficient compared to several baseline methods. Characterization of a small local basin of attraction around the global optima of the s-stress function under Bernoulli sampling rule and incoherence matrix completion framework is conducted for the first time. Theoretical result conjectures that the Euclidean distance problem with a structure-less sample mask can be effectively handled using spectral initialization followed by vanilla first-order methods. This preliminary analysis, along with the aforementioned numerical accomplishments, provides insights into revealing the landscape of the s-stress function and may stimulate the design of simpler algorithms to tackle the non-convex formulation of general EDMC problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2024.3378378</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0005-7973-4182</orcidid><orcidid>https://orcid.org/0000-0003-0621-1469</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2024-01, Vol.72, p.1-16
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_3041510483
source IEEE Electronic Library (IEL)
subjects Algorithms
Complexity theory
Conjugate gradient method
Cost function
Euclidean distance
Euclidean distance matrix completion
Euclidean geometry
Incoherence
Localization
Location awareness
matrix factorization
Minimization
over-parameterization
Riemannian optimization
sensor network localization
Signal processing algorithms
Signal strength
Stress functions
Symmetric matrices
Vectors
title Sensor Network Localization via Riemannian Conjugate Gradient and Rank Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensor%20Network%20Localization%20via%20Riemannian%20Conjugate%20Gradient%20and%20Rank%20Reduction&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Li,%20Yicheng&rft.date=2024-01-01&rft.volume=72&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2024.3378378&rft_dat=%3Cproquest_RIE%3E3041510483%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041510483&rft_id=info:pmid/&rft_ieee_id=10474485&rfr_iscdi=true