Power Supply Chain with Series Insulation Structure for High Voltage Marx Pulse Generator
Insulation power supply (IPS) for multiple switches is a key issue for solid-state pulse generators (SSPG). The existing parallel structure for IPS is short of insulation similarity, which results in low insulation utilization ratio (IUR) and limited adjustability. Here we propose a power supply cha...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2024-06, Vol.39 (6), p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on power electronics |
container_volume | 39 |
creator | Chen, Yue Yao, Chenguo Wu, Feiyu Dong, Shoulong Chen, Kai |
description | Insulation power supply (IPS) for multiple switches is a key issue for solid-state pulse generators (SSPG). The existing parallel structure for IPS is short of insulation similarity, which results in low insulation utilization ratio (IUR) and limited adjustability. Here we propose a power supply chain (PSC) with series insulation structure. The insulation circumstance of PSC maintains the same for each stage, which increases the minimum IUR to almost 90%, compared to the existing parallel structures. The proposed PSC requires purely diodes, capacitors and inductors to achieve IPS for switches, thus avoiding the customized cost and enhancing insulation adjustability. After analyzing the working principle of PSC, we evaluate the performance of PSC from the perspective of power supply and insulation. Finally, an 8-staged Marx SSPG prototype is developed to examine the compatibility of PSC and the protection circuit for PSC is implemented. The withstand voltage of PSC can be easily adjusted within 14kV according to the number of diodes. The PSC does not require external control signals and does not interfere with gate driving synchronization or load waveforms, which offers a new solution of IPS for compact Marx generators designed at nanosecond scale. |
doi_str_mv | 10.1109/TPEL.2024.3377628 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3041506312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10473098</ieee_id><sourcerecordid>3041506312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-2f4da1276e8fafc7e04630607770bb9fa5df0a3c4c41bf2812776badb65329e73</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QPAi4HXnyUeT9lKGboOJg03Bq5B2ydZRm5qkzP17O7YLrw68PO974EHonsCIEMifVouX-YgC5SPGpBQ0u0ADknOSAAF5iQaQZWmS5Tm7Rjch7AAIT4EM0NfC7Y3Hy65t6wMeb3XV4H0Vt3hpfGUCnjWhq3WsXIOX0Xdl7LzB1nk8rTZb_OnqqDcGv2n_ixddHQyemMZ4HZ2_RVdW98nd-Q7Rx-vLajxN5u-T2fh5npSUi5hQy9eaUClMZrUtpQEuGAiQUkJR5FanawualbzkpLA061EpCr0uRMpobiQbosfTbuvdT2dCVDvX-aZ_qRhwkoJghPYUOVGldyF4Y1Xrq2_tD4qAOhpUR4PqaFCdDfadh1OnMsb847lkkGfsDwDwbPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041506312</pqid></control><display><type>article</type><title>Power Supply Chain with Series Insulation Structure for High Voltage Marx Pulse Generator</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yue ; Yao, Chenguo ; Wu, Feiyu ; Dong, Shoulong ; Chen, Kai</creator><creatorcontrib>Chen, Yue ; Yao, Chenguo ; Wu, Feiyu ; Dong, Shoulong ; Chen, Kai</creatorcontrib><description>Insulation power supply (IPS) for multiple switches is a key issue for solid-state pulse generators (SSPG). The existing parallel structure for IPS is short of insulation similarity, which results in low insulation utilization ratio (IUR) and limited adjustability. Here we propose a power supply chain (PSC) with series insulation structure. The insulation circumstance of PSC maintains the same for each stage, which increases the minimum IUR to almost 90%, compared to the existing parallel structures. The proposed PSC requires purely diodes, capacitors and inductors to achieve IPS for switches, thus avoiding the customized cost and enhancing insulation adjustability. After analyzing the working principle of PSC, we evaluate the performance of PSC from the perspective of power supply and insulation. Finally, an 8-staged Marx SSPG prototype is developed to examine the compatibility of PSC and the protection circuit for PSC is implemented. The withstand voltage of PSC can be easily adjusted within 14kV according to the number of diodes. The PSC does not require external control signals and does not interfere with gate driving synchronization or load waveforms, which offers a new solution of IPS for compact Marx generators designed at nanosecond scale.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2024.3377628</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cost analysis ; Electrical insulation ; High voltage nanosecond pulse ; Inductors ; Insulation ; Insulation power supply (IPS) ; Insulation similarity ; IP networks ; Marx ; Marx generators ; Mathematical models ; Power supplies ; Power supply ; Power supply chain (PSC) ; Pulse generators ; Series structure ; Stress ; Supply chains ; Switches ; Synchronism ; Voltage ; Voltage control ; Waveforms</subject><ispartof>IEEE transactions on power electronics, 2024-06, Vol.39 (6), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-2f4da1276e8fafc7e04630607770bb9fa5df0a3c4c41bf2812776badb65329e73</cites><orcidid>0000-0002-1781-2756 ; 0000-0003-4800-1662 ; 0000-0001-6104-0282 ; 0009-0002-6898-4942 ; 0009-0005-3705-9334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10473098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10473098$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Yao, Chenguo</creatorcontrib><creatorcontrib>Wu, Feiyu</creatorcontrib><creatorcontrib>Dong, Shoulong</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><title>Power Supply Chain with Series Insulation Structure for High Voltage Marx Pulse Generator</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Insulation power supply (IPS) for multiple switches is a key issue for solid-state pulse generators (SSPG). The existing parallel structure for IPS is short of insulation similarity, which results in low insulation utilization ratio (IUR) and limited adjustability. Here we propose a power supply chain (PSC) with series insulation structure. The insulation circumstance of PSC maintains the same for each stage, which increases the minimum IUR to almost 90%, compared to the existing parallel structures. The proposed PSC requires purely diodes, capacitors and inductors to achieve IPS for switches, thus avoiding the customized cost and enhancing insulation adjustability. After analyzing the working principle of PSC, we evaluate the performance of PSC from the perspective of power supply and insulation. Finally, an 8-staged Marx SSPG prototype is developed to examine the compatibility of PSC and the protection circuit for PSC is implemented. The withstand voltage of PSC can be easily adjusted within 14kV according to the number of diodes. The PSC does not require external control signals and does not interfere with gate driving synchronization or load waveforms, which offers a new solution of IPS for compact Marx generators designed at nanosecond scale.</description><subject>Cost analysis</subject><subject>Electrical insulation</subject><subject>High voltage nanosecond pulse</subject><subject>Inductors</subject><subject>Insulation</subject><subject>Insulation power supply (IPS)</subject><subject>Insulation similarity</subject><subject>IP networks</subject><subject>Marx</subject><subject>Marx generators</subject><subject>Mathematical models</subject><subject>Power supplies</subject><subject>Power supply</subject><subject>Power supply chain (PSC)</subject><subject>Pulse generators</subject><subject>Series structure</subject><subject>Stress</subject><subject>Supply chains</subject><subject>Switches</subject><subject>Synchronism</subject><subject>Voltage</subject><subject>Voltage control</subject><subject>Waveforms</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKc_QPAi4HXnyUeT9lKGboOJg03Bq5B2ydZRm5qkzP17O7YLrw68PO974EHonsCIEMifVouX-YgC5SPGpBQ0u0ADknOSAAF5iQaQZWmS5Tm7Rjch7AAIT4EM0NfC7Y3Hy65t6wMeb3XV4H0Vt3hpfGUCnjWhq3WsXIOX0Xdl7LzB1nk8rTZb_OnqqDcGv2n_ixddHQyemMZ4HZ2_RVdW98nd-Q7Rx-vLajxN5u-T2fh5npSUi5hQy9eaUClMZrUtpQEuGAiQUkJR5FanawualbzkpLA061EpCr0uRMpobiQbosfTbuvdT2dCVDvX-aZ_qRhwkoJghPYUOVGldyF4Y1Xrq2_tD4qAOhpUR4PqaFCdDfadh1OnMsb847lkkGfsDwDwbPM</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Chen, Yue</creator><creator>Yao, Chenguo</creator><creator>Wu, Feiyu</creator><creator>Dong, Shoulong</creator><creator>Chen, Kai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1781-2756</orcidid><orcidid>https://orcid.org/0000-0003-4800-1662</orcidid><orcidid>https://orcid.org/0000-0001-6104-0282</orcidid><orcidid>https://orcid.org/0009-0002-6898-4942</orcidid><orcidid>https://orcid.org/0009-0005-3705-9334</orcidid></search><sort><creationdate>20240601</creationdate><title>Power Supply Chain with Series Insulation Structure for High Voltage Marx Pulse Generator</title><author>Chen, Yue ; Yao, Chenguo ; Wu, Feiyu ; Dong, Shoulong ; Chen, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-2f4da1276e8fafc7e04630607770bb9fa5df0a3c4c41bf2812776badb65329e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cost analysis</topic><topic>Electrical insulation</topic><topic>High voltage nanosecond pulse</topic><topic>Inductors</topic><topic>Insulation</topic><topic>Insulation power supply (IPS)</topic><topic>Insulation similarity</topic><topic>IP networks</topic><topic>Marx</topic><topic>Marx generators</topic><topic>Mathematical models</topic><topic>Power supplies</topic><topic>Power supply</topic><topic>Power supply chain (PSC)</topic><topic>Pulse generators</topic><topic>Series structure</topic><topic>Stress</topic><topic>Supply chains</topic><topic>Switches</topic><topic>Synchronism</topic><topic>Voltage</topic><topic>Voltage control</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Yao, Chenguo</creatorcontrib><creatorcontrib>Wu, Feiyu</creatorcontrib><creatorcontrib>Dong, Shoulong</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yue</au><au>Yao, Chenguo</au><au>Wu, Feiyu</au><au>Dong, Shoulong</au><au>Chen, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Supply Chain with Series Insulation Structure for High Voltage Marx Pulse Generator</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>39</volume><issue>6</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Insulation power supply (IPS) for multiple switches is a key issue for solid-state pulse generators (SSPG). The existing parallel structure for IPS is short of insulation similarity, which results in low insulation utilization ratio (IUR) and limited adjustability. Here we propose a power supply chain (PSC) with series insulation structure. The insulation circumstance of PSC maintains the same for each stage, which increases the minimum IUR to almost 90%, compared to the existing parallel structures. The proposed PSC requires purely diodes, capacitors and inductors to achieve IPS for switches, thus avoiding the customized cost and enhancing insulation adjustability. After analyzing the working principle of PSC, we evaluate the performance of PSC from the perspective of power supply and insulation. Finally, an 8-staged Marx SSPG prototype is developed to examine the compatibility of PSC and the protection circuit for PSC is implemented. The withstand voltage of PSC can be easily adjusted within 14kV according to the number of diodes. The PSC does not require external control signals and does not interfere with gate driving synchronization or load waveforms, which offers a new solution of IPS for compact Marx generators designed at nanosecond scale.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2024.3377628</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1781-2756</orcidid><orcidid>https://orcid.org/0000-0003-4800-1662</orcidid><orcidid>https://orcid.org/0000-0001-6104-0282</orcidid><orcidid>https://orcid.org/0009-0002-6898-4942</orcidid><orcidid>https://orcid.org/0009-0005-3705-9334</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2024-06, Vol.39 (6), p.1-10 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_proquest_journals_3041506312 |
source | IEEE Electronic Library (IEL) |
subjects | Cost analysis Electrical insulation High voltage nanosecond pulse Inductors Insulation Insulation power supply (IPS) Insulation similarity IP networks Marx Marx generators Mathematical models Power supplies Power supply Power supply chain (PSC) Pulse generators Series structure Stress Supply chains Switches Synchronism Voltage Voltage control Waveforms |
title | Power Supply Chain with Series Insulation Structure for High Voltage Marx Pulse Generator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Supply%20Chain%20with%20Series%20Insulation%20Structure%20for%20High%20Voltage%20Marx%20Pulse%20Generator&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Chen,%20Yue&rft.date=2024-06-01&rft.volume=39&rft.issue=6&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2024.3377628&rft_dat=%3Cproquest_RIE%3E3041506312%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041506312&rft_id=info:pmid/&rft_ieee_id=10473098&rfr_iscdi=true |