Can Routing Be Effectively Learned in Integrated Heterogeneous Networks?
With the advent of 5G and facing future 6G, various networks tend to be linked together to form an integrated heterogeneous network (Inte-HetNets). Inte-HetNets bring new challenges to routing due to the need of crossing multiple network domains. Traditional routing methods are formidable to effecti...
Gespeichert in:
Veröffentlicht in: | IEEE network 2024-01, Vol.38 (1), p.210-218 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 218 |
---|---|
container_issue | 1 |
container_start_page | 210 |
container_title | IEEE network |
container_volume | 38 |
creator | Xie, Xiaoxuan Zhang, Jialei Yan, Zheng Wang, Haiguang Li, Tieyan |
description | With the advent of 5G and facing future 6G, various networks tend to be linked together to form an integrated heterogeneous network (Inte-HetNets). Inte-HetNets bring new challenges to routing due to the need of crossing multiple network domains. Traditional routing methods are formidable to effectively support routing in Inte-HetNets. Machine learning is regarded as an promising technology to achieve such a goal, which has attracted efforts of many researchers. However, the literature still lacks a review on current research advance. In this paper, we review existing intelligent routing schemes based on machine learning in Inte-HetNets. We first introduce mainstream machine learning methods applied into routing. Then, we provide a taxonomy of learning-empowered routing schemes in Inte-HetNets by classifying them into three types based on routing scenarios: routing in ad hoc networks, routing in fixed backbone networks, and routing across network domains. Subsequently, we propose a set of requirements on learning-empowered routing in Inte-HetNets and employ these requirements to review the current literature. Finally, we explore several open issues based on our review and indicate future research directions of intelligent routing in Inte-HetNets. |
doi_str_mv | 10.1109/MNET.131.2200488 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3041499570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10121545</ieee_id><sourcerecordid>3041499570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-8e5f547b6e97aa4d1bce1df4c8200c8221655887cb787ba017aa119d90b288363</originalsourceid><addsrcrecordid>eNpNkEFLw0AQRhdRsFbvHjwseE6dSXaTzUm0VFuoFaSCt2WTTEpqTeruRum_d0t78DLDwJuZj8fYNcIIEfK7l8VkOcIER3EMIJQ6YQOUUkUo049TNgCVQ6RAiHN24dwaAIVM4gGbjk3L37reN-2KPxKf1DWVvvmhzY7PydiWKt60fNZ6WlnjwzQlT7ZbUUtd7_iC_G9nP939JTurzcbR1bEP2fvTZDmeRvPX59n4YR6VsZA-UiRrKbIipTwzRlRYlIRVLUoVYocSYxpSq6wsMpUVBjBQiHmVQxErlaTJkN0e7m5t992T83rd9bYNL3UCAkWeywwCBQeqtJ1zlmq9tc2XsTuNoPe-9N6XDr700VdYuTmsNET0D8cYZXD1B6S1Za4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041499570</pqid></control><display><type>article</type><title>Can Routing Be Effectively Learned in Integrated Heterogeneous Networks?</title><source>IEEE Electronic Library (IEL)</source><creator>Xie, Xiaoxuan ; Zhang, Jialei ; Yan, Zheng ; Wang, Haiguang ; Li, Tieyan</creator><creatorcontrib>Xie, Xiaoxuan ; Zhang, Jialei ; Yan, Zheng ; Wang, Haiguang ; Li, Tieyan</creatorcontrib><description>With the advent of 5G and facing future 6G, various networks tend to be linked together to form an integrated heterogeneous network (Inte-HetNets). Inte-HetNets bring new challenges to routing due to the need of crossing multiple network domains. Traditional routing methods are formidable to effectively support routing in Inte-HetNets. Machine learning is regarded as an promising technology to achieve such a goal, which has attracted efforts of many researchers. However, the literature still lacks a review on current research advance. In this paper, we review existing intelligent routing schemes based on machine learning in Inte-HetNets. We first introduce mainstream machine learning methods applied into routing. Then, we provide a taxonomy of learning-empowered routing schemes in Inte-HetNets by classifying them into three types based on routing scenarios: routing in ad hoc networks, routing in fixed backbone networks, and routing across network domains. Subsequently, we propose a set of requirements on learning-empowered routing in Inte-HetNets and employ these requirements to review the current literature. Finally, we explore several open issues based on our review and indicate future research directions of intelligent routing in Inte-HetNets.</description><identifier>ISSN: 0890-8044</identifier><identifier>EISSN: 1558-156X</identifier><identifier>DOI: 10.1109/MNET.131.2200488</identifier><identifier>CODEN: IENEET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G mobile communication ; 6G mobile communication ; Ad hoc networks ; Computer networks ; Federated learning ; Literature reviews ; Machine learning ; Optimization ; Routing ; Routing (telecommunications) ; Taxonomy ; Unsupervised learning ; Wireless sensor networks</subject><ispartof>IEEE network, 2024-01, Vol.38 (1), p.210-218</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-8e5f547b6e97aa4d1bce1df4c8200c8221655887cb787ba017aa119d90b288363</cites><orcidid>0000-0003-4688-2697 ; 0000-0002-9697-2108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10121545$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10121545$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xie, Xiaoxuan</creatorcontrib><creatorcontrib>Zhang, Jialei</creatorcontrib><creatorcontrib>Yan, Zheng</creatorcontrib><creatorcontrib>Wang, Haiguang</creatorcontrib><creatorcontrib>Li, Tieyan</creatorcontrib><title>Can Routing Be Effectively Learned in Integrated Heterogeneous Networks?</title><title>IEEE network</title><addtitle>NET-M</addtitle><description>With the advent of 5G and facing future 6G, various networks tend to be linked together to form an integrated heterogeneous network (Inte-HetNets). Inte-HetNets bring new challenges to routing due to the need of crossing multiple network domains. Traditional routing methods are formidable to effectively support routing in Inte-HetNets. Machine learning is regarded as an promising technology to achieve such a goal, which has attracted efforts of many researchers. However, the literature still lacks a review on current research advance. In this paper, we review existing intelligent routing schemes based on machine learning in Inte-HetNets. We first introduce mainstream machine learning methods applied into routing. Then, we provide a taxonomy of learning-empowered routing schemes in Inte-HetNets by classifying them into three types based on routing scenarios: routing in ad hoc networks, routing in fixed backbone networks, and routing across network domains. Subsequently, we propose a set of requirements on learning-empowered routing in Inte-HetNets and employ these requirements to review the current literature. Finally, we explore several open issues based on our review and indicate future research directions of intelligent routing in Inte-HetNets.</description><subject>5G mobile communication</subject><subject>6G mobile communication</subject><subject>Ad hoc networks</subject><subject>Computer networks</subject><subject>Federated learning</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Routing</subject><subject>Routing (telecommunications)</subject><subject>Taxonomy</subject><subject>Unsupervised learning</subject><subject>Wireless sensor networks</subject><issn>0890-8044</issn><issn>1558-156X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLw0AQRhdRsFbvHjwseE6dSXaTzUm0VFuoFaSCt2WTTEpqTeruRum_d0t78DLDwJuZj8fYNcIIEfK7l8VkOcIER3EMIJQ6YQOUUkUo049TNgCVQ6RAiHN24dwaAIVM4gGbjk3L37reN-2KPxKf1DWVvvmhzY7PydiWKt60fNZ6WlnjwzQlT7ZbUUtd7_iC_G9nP939JTurzcbR1bEP2fvTZDmeRvPX59n4YR6VsZA-UiRrKbIipTwzRlRYlIRVLUoVYocSYxpSq6wsMpUVBjBQiHmVQxErlaTJkN0e7m5t992T83rd9bYNL3UCAkWeywwCBQeqtJ1zlmq9tc2XsTuNoPe-9N6XDr700VdYuTmsNET0D8cYZXD1B6S1Za4</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Xie, Xiaoxuan</creator><creator>Zhang, Jialei</creator><creator>Yan, Zheng</creator><creator>Wang, Haiguang</creator><creator>Li, Tieyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4688-2697</orcidid><orcidid>https://orcid.org/0000-0002-9697-2108</orcidid></search><sort><creationdate>202401</creationdate><title>Can Routing Be Effectively Learned in Integrated Heterogeneous Networks?</title><author>Xie, Xiaoxuan ; Zhang, Jialei ; Yan, Zheng ; Wang, Haiguang ; Li, Tieyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-8e5f547b6e97aa4d1bce1df4c8200c8221655887cb787ba017aa119d90b288363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5G mobile communication</topic><topic>6G mobile communication</topic><topic>Ad hoc networks</topic><topic>Computer networks</topic><topic>Federated learning</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Routing</topic><topic>Routing (telecommunications)</topic><topic>Taxonomy</topic><topic>Unsupervised learning</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xiaoxuan</creatorcontrib><creatorcontrib>Zhang, Jialei</creatorcontrib><creatorcontrib>Yan, Zheng</creatorcontrib><creatorcontrib>Wang, Haiguang</creatorcontrib><creatorcontrib>Li, Tieyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE network</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Xiaoxuan</au><au>Zhang, Jialei</au><au>Yan, Zheng</au><au>Wang, Haiguang</au><au>Li, Tieyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can Routing Be Effectively Learned in Integrated Heterogeneous Networks?</atitle><jtitle>IEEE network</jtitle><stitle>NET-M</stitle><date>2024-01</date><risdate>2024</risdate><volume>38</volume><issue>1</issue><spage>210</spage><epage>218</epage><pages>210-218</pages><issn>0890-8044</issn><eissn>1558-156X</eissn><coden>IENEET</coden><abstract>With the advent of 5G and facing future 6G, various networks tend to be linked together to form an integrated heterogeneous network (Inte-HetNets). Inte-HetNets bring new challenges to routing due to the need of crossing multiple network domains. Traditional routing methods are formidable to effectively support routing in Inte-HetNets. Machine learning is regarded as an promising technology to achieve such a goal, which has attracted efforts of many researchers. However, the literature still lacks a review on current research advance. In this paper, we review existing intelligent routing schemes based on machine learning in Inte-HetNets. We first introduce mainstream machine learning methods applied into routing. Then, we provide a taxonomy of learning-empowered routing schemes in Inte-HetNets by classifying them into three types based on routing scenarios: routing in ad hoc networks, routing in fixed backbone networks, and routing across network domains. Subsequently, we propose a set of requirements on learning-empowered routing in Inte-HetNets and employ these requirements to review the current literature. Finally, we explore several open issues based on our review and indicate future research directions of intelligent routing in Inte-HetNets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MNET.131.2200488</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4688-2697</orcidid><orcidid>https://orcid.org/0000-0002-9697-2108</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0890-8044 |
ispartof | IEEE network, 2024-01, Vol.38 (1), p.210-218 |
issn | 0890-8044 1558-156X |
language | eng |
recordid | cdi_proquest_journals_3041499570 |
source | IEEE Electronic Library (IEL) |
subjects | 5G mobile communication 6G mobile communication Ad hoc networks Computer networks Federated learning Literature reviews Machine learning Optimization Routing Routing (telecommunications) Taxonomy Unsupervised learning Wireless sensor networks |
title | Can Routing Be Effectively Learned in Integrated Heterogeneous Networks? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20Routing%20Be%20Effectively%20Learned%20in%20Integrated%20Heterogeneous%20Networks?&rft.jtitle=IEEE%20network&rft.au=Xie,%20Xiaoxuan&rft.date=2024-01&rft.volume=38&rft.issue=1&rft.spage=210&rft.epage=218&rft.pages=210-218&rft.issn=0890-8044&rft.eissn=1558-156X&rft.coden=IENEET&rft_id=info:doi/10.1109/MNET.131.2200488&rft_dat=%3Cproquest_RIE%3E3041499570%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041499570&rft_id=info:pmid/&rft_ieee_id=10121545&rfr_iscdi=true |