High-order meshless global stability analysis of Taylor-Couette flows in complex domains

Recently, meshless methods have become popular in numerically solving partial differential equations and have been employed to solve equations governing fluid flows, heat transfer, and species transport. In the present study, a numerical solver is developed employing the meshless framework to effici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Unnikrishnan, Akash, Narayanan, Vinod, Vanka, Surya Pratap
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Unnikrishnan, Akash
Narayanan, Vinod
Vanka, Surya Pratap
description Recently, meshless methods have become popular in numerically solving partial differential equations and have been employed to solve equations governing fluid flows, heat transfer, and species transport. In the present study, a numerical solver is developed employing the meshless framework to efficiently compute the hydrodynamic stability of fluid flows in complex geometries. The developed method is tested on two cases of Taylor-Couette flows. The concentric case represents the parallel flow assumption incorporated in the Orr-Sommerfeld model and the eccentric Taylor-Couette flow incorporates a non-parallel base flow with separation bubbles. The method was validated against earlier works by Marcus [1], Oikawa et al. [2], Leclercq et al. [3], and Mittal et al. [4]. The results for the two cases and the effectiveness of the method are discussed in detail. The method is then applied to Taylor-Couette flow in an elliptical enclosure and the stability of the flow is investigated.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3040958746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040958746</sourcerecordid><originalsourceid>FETCH-proquest_journals_30409587463</originalsourceid><addsrcrecordid>eNqNzE0KwjAQQOEgCIp6hwHXhZj0z3VRPIALdxJ1qinTTs2kaG-vCw_g6m0-3kTNjbWbpEyNmamVSKO1NnlhsszO1eng74-Eww0DtCgPQhG4E18cgUR38eTjCK5zNIoX4BqObiQOScUDxohQE78EfAdXbnvCN9y4db6TpZrWjgRXvy7Uer87VoekD_wcUOK54SF8v3K2OtXbrCzS3P6nPue3Qos</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040958746</pqid></control><display><type>article</type><title>High-order meshless global stability analysis of Taylor-Couette flows in complex domains</title><source>Free E- Journals</source><creator>Unnikrishnan, Akash ; Narayanan, Vinod ; Vanka, Surya Pratap</creator><creatorcontrib>Unnikrishnan, Akash ; Narayanan, Vinod ; Vanka, Surya Pratap</creatorcontrib><description>Recently, meshless methods have become popular in numerically solving partial differential equations and have been employed to solve equations governing fluid flows, heat transfer, and species transport. In the present study, a numerical solver is developed employing the meshless framework to efficiently compute the hydrodynamic stability of fluid flows in complex geometries. The developed method is tested on two cases of Taylor-Couette flows. The concentric case represents the parallel flow assumption incorporated in the Orr-Sommerfeld model and the eccentric Taylor-Couette flow incorporates a non-parallel base flow with separation bubbles. The method was validated against earlier works by Marcus [1], Oikawa et al. [2], Leclercq et al. [3], and Mittal et al. [4]. The results for the two cases and the effectiveness of the method are discussed in detail. The method is then applied to Taylor-Couette flow in an elliptical enclosure and the stability of the flow is investigated.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Base flow ; Couette flow ; Finite element method ; Flow stability ; Fluid flow ; Meshless methods ; Parallel flow ; Partial differential equations ; Stability analysis</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Unnikrishnan, Akash</creatorcontrib><creatorcontrib>Narayanan, Vinod</creatorcontrib><creatorcontrib>Vanka, Surya Pratap</creatorcontrib><title>High-order meshless global stability analysis of Taylor-Couette flows in complex domains</title><title>arXiv.org</title><description>Recently, meshless methods have become popular in numerically solving partial differential equations and have been employed to solve equations governing fluid flows, heat transfer, and species transport. In the present study, a numerical solver is developed employing the meshless framework to efficiently compute the hydrodynamic stability of fluid flows in complex geometries. The developed method is tested on two cases of Taylor-Couette flows. The concentric case represents the parallel flow assumption incorporated in the Orr-Sommerfeld model and the eccentric Taylor-Couette flow incorporates a non-parallel base flow with separation bubbles. The method was validated against earlier works by Marcus [1], Oikawa et al. [2], Leclercq et al. [3], and Mittal et al. [4]. The results for the two cases and the effectiveness of the method are discussed in detail. The method is then applied to Taylor-Couette flow in an elliptical enclosure and the stability of the flow is investigated.</description><subject>Base flow</subject><subject>Couette flow</subject><subject>Finite element method</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Meshless methods</subject><subject>Parallel flow</subject><subject>Partial differential equations</subject><subject>Stability analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzE0KwjAQQOEgCIp6hwHXhZj0z3VRPIALdxJ1qinTTs2kaG-vCw_g6m0-3kTNjbWbpEyNmamVSKO1NnlhsszO1eng74-Eww0DtCgPQhG4E18cgUR38eTjCK5zNIoX4BqObiQOScUDxohQE78EfAdXbnvCN9y4db6TpZrWjgRXvy7Uer87VoekD_wcUOK54SF8v3K2OtXbrCzS3P6nPue3Qos</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Unnikrishnan, Akash</creator><creator>Narayanan, Vinod</creator><creator>Vanka, Surya Pratap</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240417</creationdate><title>High-order meshless global stability analysis of Taylor-Couette flows in complex domains</title><author>Unnikrishnan, Akash ; Narayanan, Vinod ; Vanka, Surya Pratap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30409587463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Base flow</topic><topic>Couette flow</topic><topic>Finite element method</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Meshless methods</topic><topic>Parallel flow</topic><topic>Partial differential equations</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Unnikrishnan, Akash</creatorcontrib><creatorcontrib>Narayanan, Vinod</creatorcontrib><creatorcontrib>Vanka, Surya Pratap</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unnikrishnan, Akash</au><au>Narayanan, Vinod</au><au>Vanka, Surya Pratap</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>High-order meshless global stability analysis of Taylor-Couette flows in complex domains</atitle><jtitle>arXiv.org</jtitle><date>2024-04-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recently, meshless methods have become popular in numerically solving partial differential equations and have been employed to solve equations governing fluid flows, heat transfer, and species transport. In the present study, a numerical solver is developed employing the meshless framework to efficiently compute the hydrodynamic stability of fluid flows in complex geometries. The developed method is tested on two cases of Taylor-Couette flows. The concentric case represents the parallel flow assumption incorporated in the Orr-Sommerfeld model and the eccentric Taylor-Couette flow incorporates a non-parallel base flow with separation bubbles. The method was validated against earlier works by Marcus [1], Oikawa et al. [2], Leclercq et al. [3], and Mittal et al. [4]. The results for the two cases and the effectiveness of the method are discussed in detail. The method is then applied to Taylor-Couette flow in an elliptical enclosure and the stability of the flow is investigated.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3040958746
source Free E- Journals
subjects Base flow
Couette flow
Finite element method
Flow stability
Fluid flow
Meshless methods
Parallel flow
Partial differential equations
Stability analysis
title High-order meshless global stability analysis of Taylor-Couette flows in complex domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=High-order%20meshless%20global%20stability%20analysis%20of%20Taylor-Couette%20flows%20in%20complex%20domains&rft.jtitle=arXiv.org&rft.au=Unnikrishnan,%20Akash&rft.date=2024-04-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3040958746%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040958746&rft_id=info:pmid/&rfr_iscdi=true