Statistical convex-cocompactness for mapping class groups of non-orientable surfaces
We show that a finite volume deformation retract \(\mathcal{T}_{\varepsilon_t}^{-}(\mathcal{N}_g)/\mathrm{MCG}(\mathcal{N}_g)\) of the moduli space \(\mathcal{M}(\mathcal{N}_g)\) of non-orientable surfaces \(\mathcal{N}_g\) behaves like the convex core of \(\mathcal{M}(\mathcal{N}_g)\), despite not...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Khan, Sayantan |
description | We show that a finite volume deformation retract \(\mathcal{T}_{\varepsilon_t}^{-}(\mathcal{N}_g)/\mathrm{MCG}(\mathcal{N}_g)\) of the moduli space \(\mathcal{M}(\mathcal{N}_g)\) of non-orientable surfaces \(\mathcal{N}_g\) behaves like the convex core of \(\mathcal{M}(\mathcal{N}_g)\), despite not even being quasi-convex. We then show that geodesics in the convex core leave compact regions with exponentially low probabilities, showing that the action of \(\mathrm{MCG}(\mathcal{N}_g)\) on \(\mathcal{T}_{\varepsilon_t}^{-}(\mathcal{N}_g)\) is statistically convex-cocompact. Combined with results of Coulon and Yang, this shows that the growth rate of orbit points under the mapping class group action is purely exponential, pseudo-Anosov elements in mapping class groups of non-orientable surfaces are exponentially generic, and the action of mapping class group on the limit set in the horofunction boundary is ergodic with respect to the Patterson-Sullivan measure. A key step of our proof relies on complexity length, developed by Dowdall and Masur, which is an alternative notion of distance on Teichm\"uller space that accounts for geodesics that spend a considerable fraction of their time in the thin part. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3040953562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040953562</sourcerecordid><originalsourceid>FETCH-proquest_journals_30409535623</originalsourceid><addsrcrecordid>eNqNikELwiAYQCUIGrX_IHQemM5V5yi6t_sw0eFwfuan0c9vh35ApwfvvRWpuBCH5tRyviE14sQY492RSykq0j-yyg6z08pTDeFtPo0GDXNUOgeDSC0kOqsYXRip9moxY4ISkYKlAUIDyZmQ1dMbiiVZpQ3uyNoqj6b-cUv2t2t_uTcxwasYzMMEJYUlDYK17CyF7Lj47_oCHzRBkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040953562</pqid></control><display><type>article</type><title>Statistical convex-cocompactness for mapping class groups of non-orientable surfaces</title><source>Freely Accessible Journals</source><creator>Khan, Sayantan</creator><creatorcontrib>Khan, Sayantan</creatorcontrib><description>We show that a finite volume deformation retract \(\mathcal{T}_{\varepsilon_t}^{-}(\mathcal{N}_g)/\mathrm{MCG}(\mathcal{N}_g)\) of the moduli space \(\mathcal{M}(\mathcal{N}_g)\) of non-orientable surfaces \(\mathcal{N}_g\) behaves like the convex core of \(\mathcal{M}(\mathcal{N}_g)\), despite not even being quasi-convex. We then show that geodesics in the convex core leave compact regions with exponentially low probabilities, showing that the action of \(\mathrm{MCG}(\mathcal{N}_g)\) on \(\mathcal{T}_{\varepsilon_t}^{-}(\mathcal{N}_g)\) is statistically convex-cocompact. Combined with results of Coulon and Yang, this shows that the growth rate of orbit points under the mapping class group action is purely exponential, pseudo-Anosov elements in mapping class groups of non-orientable surfaces are exponentially generic, and the action of mapping class group on the limit set in the horofunction boundary is ergodic with respect to the Patterson-Sullivan measure. A key step of our proof relies on complexity length, developed by Dowdall and Masur, which is an alternative notion of distance on Teichm\"uller space that accounts for geodesics that spend a considerable fraction of their time in the thin part.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Geodesy ; Mapping</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Khan, Sayantan</creatorcontrib><title>Statistical convex-cocompactness for mapping class groups of non-orientable surfaces</title><title>arXiv.org</title><description>We show that a finite volume deformation retract \(\mathcal{T}_{\varepsilon_t}^{-}(\mathcal{N}_g)/\mathrm{MCG}(\mathcal{N}_g)\) of the moduli space \(\mathcal{M}(\mathcal{N}_g)\) of non-orientable surfaces \(\mathcal{N}_g\) behaves like the convex core of \(\mathcal{M}(\mathcal{N}_g)\), despite not even being quasi-convex. We then show that geodesics in the convex core leave compact regions with exponentially low probabilities, showing that the action of \(\mathrm{MCG}(\mathcal{N}_g)\) on \(\mathcal{T}_{\varepsilon_t}^{-}(\mathcal{N}_g)\) is statistically convex-cocompact. Combined with results of Coulon and Yang, this shows that the growth rate of orbit points under the mapping class group action is purely exponential, pseudo-Anosov elements in mapping class groups of non-orientable surfaces are exponentially generic, and the action of mapping class group on the limit set in the horofunction boundary is ergodic with respect to the Patterson-Sullivan measure. A key step of our proof relies on complexity length, developed by Dowdall and Masur, which is an alternative notion of distance on Teichm\"uller space that accounts for geodesics that spend a considerable fraction of their time in the thin part.</description><subject>Geodesy</subject><subject>Mapping</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikELwiAYQCUIGrX_IHQemM5V5yi6t_sw0eFwfuan0c9vh35ApwfvvRWpuBCH5tRyviE14sQY492RSykq0j-yyg6z08pTDeFtPo0GDXNUOgeDSC0kOqsYXRip9moxY4ISkYKlAUIDyZmQ1dMbiiVZpQ3uyNoqj6b-cUv2t2t_uTcxwasYzMMEJYUlDYK17CyF7Lj47_oCHzRBkQ</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Khan, Sayantan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240417</creationdate><title>Statistical convex-cocompactness for mapping class groups of non-orientable surfaces</title><author>Khan, Sayantan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30409535623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Geodesy</topic><topic>Mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Khan, Sayantan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Sayantan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Statistical convex-cocompactness for mapping class groups of non-orientable surfaces</atitle><jtitle>arXiv.org</jtitle><date>2024-04-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We show that a finite volume deformation retract \(\mathcal{T}_{\varepsilon_t}^{-}(\mathcal{N}_g)/\mathrm{MCG}(\mathcal{N}_g)\) of the moduli space \(\mathcal{M}(\mathcal{N}_g)\) of non-orientable surfaces \(\mathcal{N}_g\) behaves like the convex core of \(\mathcal{M}(\mathcal{N}_g)\), despite not even being quasi-convex. We then show that geodesics in the convex core leave compact regions with exponentially low probabilities, showing that the action of \(\mathrm{MCG}(\mathcal{N}_g)\) on \(\mathcal{T}_{\varepsilon_t}^{-}(\mathcal{N}_g)\) is statistically convex-cocompact. Combined with results of Coulon and Yang, this shows that the growth rate of orbit points under the mapping class group action is purely exponential, pseudo-Anosov elements in mapping class groups of non-orientable surfaces are exponentially generic, and the action of mapping class group on the limit set in the horofunction boundary is ergodic with respect to the Patterson-Sullivan measure. A key step of our proof relies on complexity length, developed by Dowdall and Masur, which is an alternative notion of distance on Teichm\"uller space that accounts for geodesics that spend a considerable fraction of their time in the thin part.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3040953562 |
source | Freely Accessible Journals |
subjects | Geodesy Mapping |
title | Statistical convex-cocompactness for mapping class groups of non-orientable surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Statistical%20convex-cocompactness%20for%20mapping%20class%20groups%20of%20non-orientable%20surfaces&rft.jtitle=arXiv.org&rft.au=Khan,%20Sayantan&rft.date=2024-04-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3040953562%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040953562&rft_id=info:pmid/&rfr_iscdi=true |