Formation of Polar Crown Filament Magnetic Fields by Supergranular Helicity Injection
To understand the magnetic fields of the polar crown filaments (PCFs) at high latitudes near polar regions of the Sun, we perform magnetofrictional numerical simulations on the long-term magnetic evolution of bipolar fields with roughly east–west polarity inversion lines (PILs) in a 3D spherical wed...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2024-04, Vol.965 (2), p.160 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 160 |
container_title | The Astrophysical journal |
container_volume | 965 |
creator | Chen, Huanxin Xia, Chun Chen, Hechao |
description | To understand the magnetic fields of the polar crown filaments (PCFs) at high latitudes near polar regions of the Sun, we perform magnetofrictional numerical simulations on the long-term magnetic evolution of bipolar fields with roughly east–west polarity inversion lines (PILs) in a 3D spherical wedge domain near polar regions. The Coriolis-effect-induced vortical motions at the boundaries of several supergranular cells inject magnetic helicity from the photospheric boundary into the solar atmosphere. Supergranular-scale helicity injection, transfer, and condensation produce strongly sheared magnetic fields. Magnetic reconnections at footpoints of the sheared fields produce magnetic flux ropes (MFRs) with helicity signs consistent with the observed hemispheric helicity rule. The cross-sectional area of MFRs exhibits an uneven distribution, resembling a “foot-node-foot” periodic configuration. Experiments with different tilt directions of PILs indicate that the PCFs preferably form along PILs with the western end close to the polar region. The bending of PILs caused by supergranular flows, forming S-shape (Z-shape) PIL segments, promotes the formation of dextral (sinistral) MFRs. The realistic magnetic models we obtained can serve as starting points for the study of the plasma formation and eruption of PCFs. |
doi_str_mv | 10.3847/1538-4357/ad3352 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3040596049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ecd5e5ad4cb44276acca4a31bcaed8f4</doaj_id><sourcerecordid>3040596049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-954f7c9dbeca3752a1a2f61468f560f8133378789fe050f4fb21d1151053f60b3</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhhdRsFbvHgPizdjd7EeyRynWFioKKnhbJvtREtJs3KRI_72JkXoRT8u-PPPMMIPQJcG3NGPpjHCaxYzydAaGUp4cockhOkYTjDGLBU3fT9FZ25bDN5Fygt4WPmyhK3wdeRc9-wpCNA_-s44WRQVbW3fRI2xq2xW6T2xl2ijfRy-7xoZNgHo38EtbFbro9tGqLq0eXOfoxEHV2oufd9r3uX-dL-P108NqfreONZWyiyVnLtXS5FYDTXkCBBInCBOZ4wK7jFBK0yzNpLOYY8dcnhBDCCeYUydwTqdoNXqNh1I1odhC2CsPhfoOfNgoCP3olVVWG245GKZzxpJUgNbAgJJcgzWZY73ranQ1wX_sbNup0u9C3Y-vKGaYS4GZ7Ck8Ujr4tg3WHboSrIZDqGHrati6Gg_Rl9yMJYVvfp3_4Nd_4NCUSgquEkUEVo1x9AsVEpXA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040596049</pqid></control><display><type>article</type><title>Formation of Polar Crown Filament Magnetic Fields by Supergranular Helicity Injection</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Huanxin ; Xia, Chun ; Chen, Hechao</creator><creatorcontrib>Chen, Huanxin ; Xia, Chun ; Chen, Hechao</creatorcontrib><description>To understand the magnetic fields of the polar crown filaments (PCFs) at high latitudes near polar regions of the Sun, we perform magnetofrictional numerical simulations on the long-term magnetic evolution of bipolar fields with roughly east–west polarity inversion lines (PILs) in a 3D spherical wedge domain near polar regions. The Coriolis-effect-induced vortical motions at the boundaries of several supergranular cells inject magnetic helicity from the photospheric boundary into the solar atmosphere. Supergranular-scale helicity injection, transfer, and condensation produce strongly sheared magnetic fields. Magnetic reconnections at footpoints of the sheared fields produce magnetic flux ropes (MFRs) with helicity signs consistent with the observed hemispheric helicity rule. The cross-sectional area of MFRs exhibits an uneven distribution, resembling a “foot-node-foot” periodic configuration. Experiments with different tilt directions of PILs indicate that the PCFs preferably form along PILs with the western end close to the polar region. The bending of PILs caused by supergranular flows, forming S-shape (Z-shape) PIL segments, promotes the formation of dextral (sinistral) MFRs. The realistic magnetic models we obtained can serve as starting points for the study of the plasma formation and eruption of PCFs.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad3352</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Atmospheric models ; Coriolis effect ; Deformation ; Filaments ; Helicity ; Injection ; Magnetic fields ; Magnetic flux ; Magnetohydrodynamical simulations ; Mathematical models ; Numerical simulations ; Photosphere ; Polar environments ; Polar regions ; Quiescent solar prominence ; Ropes ; Shape ; Solar atmosphere ; Solar magnetic fields ; Solar prominences ; Supergranulation</subject><ispartof>The Astrophysical journal, 2024-04, Vol.965 (2), p.160</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-954f7c9dbeca3752a1a2f61468f560f8133378789fe050f4fb21d1151053f60b3</cites><orcidid>0009-0001-3887-469X ; 0000-0002-7153-4304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad3352/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2095,27903,27904,38869,53845</link.rule.ids></links><search><creatorcontrib>Chen, Huanxin</creatorcontrib><creatorcontrib>Xia, Chun</creatorcontrib><creatorcontrib>Chen, Hechao</creatorcontrib><title>Formation of Polar Crown Filament Magnetic Fields by Supergranular Helicity Injection</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>To understand the magnetic fields of the polar crown filaments (PCFs) at high latitudes near polar regions of the Sun, we perform magnetofrictional numerical simulations on the long-term magnetic evolution of bipolar fields with roughly east–west polarity inversion lines (PILs) in a 3D spherical wedge domain near polar regions. The Coriolis-effect-induced vortical motions at the boundaries of several supergranular cells inject magnetic helicity from the photospheric boundary into the solar atmosphere. Supergranular-scale helicity injection, transfer, and condensation produce strongly sheared magnetic fields. Magnetic reconnections at footpoints of the sheared fields produce magnetic flux ropes (MFRs) with helicity signs consistent with the observed hemispheric helicity rule. The cross-sectional area of MFRs exhibits an uneven distribution, resembling a “foot-node-foot” periodic configuration. Experiments with different tilt directions of PILs indicate that the PCFs preferably form along PILs with the western end close to the polar region. The bending of PILs caused by supergranular flows, forming S-shape (Z-shape) PIL segments, promotes the formation of dextral (sinistral) MFRs. The realistic magnetic models we obtained can serve as starting points for the study of the plasma formation and eruption of PCFs.</description><subject>Atmospheric models</subject><subject>Coriolis effect</subject><subject>Deformation</subject><subject>Filaments</subject><subject>Helicity</subject><subject>Injection</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetohydrodynamical simulations</subject><subject>Mathematical models</subject><subject>Numerical simulations</subject><subject>Photosphere</subject><subject>Polar environments</subject><subject>Polar regions</subject><subject>Quiescent solar prominence</subject><subject>Ropes</subject><subject>Shape</subject><subject>Solar atmosphere</subject><subject>Solar magnetic fields</subject><subject>Solar prominences</subject><subject>Supergranulation</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1Lw0AQhhdRsFbvHgPizdjd7EeyRynWFioKKnhbJvtREtJs3KRI_72JkXoRT8u-PPPMMIPQJcG3NGPpjHCaxYzydAaGUp4cockhOkYTjDGLBU3fT9FZ25bDN5Fygt4WPmyhK3wdeRc9-wpCNA_-s44WRQVbW3fRI2xq2xW6T2xl2ijfRy-7xoZNgHo38EtbFbro9tGqLq0eXOfoxEHV2oufd9r3uX-dL-P108NqfreONZWyiyVnLtXS5FYDTXkCBBInCBOZ4wK7jFBK0yzNpLOYY8dcnhBDCCeYUydwTqdoNXqNh1I1odhC2CsPhfoOfNgoCP3olVVWG245GKZzxpJUgNbAgJJcgzWZY73ranQ1wX_sbNup0u9C3Y-vKGaYS4GZ7Ck8Ujr4tg3WHboSrIZDqGHrati6Gg_Rl9yMJYVvfp3_4Nd_4NCUSgquEkUEVo1x9AsVEpXA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Chen, Huanxin</creator><creator>Xia, Chun</creator><creator>Chen, Hechao</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-3887-469X</orcidid><orcidid>https://orcid.org/0000-0002-7153-4304</orcidid></search><sort><creationdate>20240401</creationdate><title>Formation of Polar Crown Filament Magnetic Fields by Supergranular Helicity Injection</title><author>Chen, Huanxin ; Xia, Chun ; Chen, Hechao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-954f7c9dbeca3752a1a2f61468f560f8133378789fe050f4fb21d1151053f60b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric models</topic><topic>Coriolis effect</topic><topic>Deformation</topic><topic>Filaments</topic><topic>Helicity</topic><topic>Injection</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetohydrodynamical simulations</topic><topic>Mathematical models</topic><topic>Numerical simulations</topic><topic>Photosphere</topic><topic>Polar environments</topic><topic>Polar regions</topic><topic>Quiescent solar prominence</topic><topic>Ropes</topic><topic>Shape</topic><topic>Solar atmosphere</topic><topic>Solar magnetic fields</topic><topic>Solar prominences</topic><topic>Supergranulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huanxin</creatorcontrib><creatorcontrib>Xia, Chun</creatorcontrib><creatorcontrib>Chen, Hechao</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huanxin</au><au>Xia, Chun</au><au>Chen, Hechao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of Polar Crown Filament Magnetic Fields by Supergranular Helicity Injection</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>965</volume><issue>2</issue><spage>160</spage><pages>160-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>To understand the magnetic fields of the polar crown filaments (PCFs) at high latitudes near polar regions of the Sun, we perform magnetofrictional numerical simulations on the long-term magnetic evolution of bipolar fields with roughly east–west polarity inversion lines (PILs) in a 3D spherical wedge domain near polar regions. The Coriolis-effect-induced vortical motions at the boundaries of several supergranular cells inject magnetic helicity from the photospheric boundary into the solar atmosphere. Supergranular-scale helicity injection, transfer, and condensation produce strongly sheared magnetic fields. Magnetic reconnections at footpoints of the sheared fields produce magnetic flux ropes (MFRs) with helicity signs consistent with the observed hemispheric helicity rule. The cross-sectional area of MFRs exhibits an uneven distribution, resembling a “foot-node-foot” periodic configuration. Experiments with different tilt directions of PILs indicate that the PCFs preferably form along PILs with the western end close to the polar region. The bending of PILs caused by supergranular flows, forming S-shape (Z-shape) PIL segments, promotes the formation of dextral (sinistral) MFRs. The realistic magnetic models we obtained can serve as starting points for the study of the plasma formation and eruption of PCFs.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad3352</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0001-3887-469X</orcidid><orcidid>https://orcid.org/0000-0002-7153-4304</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2024-04, Vol.965 (2), p.160 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_3040596049 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Atmospheric models Coriolis effect Deformation Filaments Helicity Injection Magnetic fields Magnetic flux Magnetohydrodynamical simulations Mathematical models Numerical simulations Photosphere Polar environments Polar regions Quiescent solar prominence Ropes Shape Solar atmosphere Solar magnetic fields Solar prominences Supergranulation |
title | Formation of Polar Crown Filament Magnetic Fields by Supergranular Helicity Injection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20Polar%20Crown%20Filament%20Magnetic%20Fields%20by%20Supergranular%20Helicity%20Injection&rft.jtitle=The%20Astrophysical%20journal&rft.au=Chen,%20Huanxin&rft.date=2024-04-01&rft.volume=965&rft.issue=2&rft.spage=160&rft.pages=160-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad3352&rft_dat=%3Cproquest_doaj_%3E3040596049%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040596049&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_ecd5e5ad4cb44276acca4a31bcaed8f4&rfr_iscdi=true |