A droplet in a ferrofluid droplet under a rotating magnetic field

Two-dimensional (2-D) direct numerical simulations of a compound droplet (a non-magnetizable droplet wrapped in a ferrofluid droplet) suspended in a non-magnetizable ambient fluid under a rotating uniform magnetic field are carried out. The motion and deformation of the compound droplet are studied....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mathematics 2024-06, Vol.146 (1), Article 6
Hauptverfasser: Zhou, Xinping, Xiao, Wencai, Zhang, Qi, Zhang, Wanqiu, Zhang, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of engineering mathematics
container_volume 146
creator Zhou, Xinping
Xiao, Wencai
Zhang, Qi
Zhang, Wanqiu
Zhang, Fei
description Two-dimensional (2-D) direct numerical simulations of a compound droplet (a non-magnetizable droplet wrapped in a ferrofluid droplet) suspended in a non-magnetizable ambient fluid under a rotating uniform magnetic field are carried out. The motion and deformation of the compound droplet are studied. The numerical results show that there are two stable states (the concentric and the eccentric states) for the compound droplet at the stable stage, dependent on the frequency of the rotating magnetic field and the magnetic Bond number. The feature of the concentric state for the compound droplet at the stable stage is studied in detail. We find that the inner and outer parts of the compound droplet rotate with the magnetic field, while there is hysteresis between the inner (or outer) droplet and the external magnetic field. The hysteresis effect for the inner droplet is weaker than that of the outer droplet, mainly due to the viscous sweeping effect of the outer droplet on the inner droplet. Increasing the frequency of the external magnetic field, both the phase angle between the inner and outer droplets and the time required for the compound droplet to shift from the stable eccentric state to the stable concentric one will increase. For the eccentric state at the stable stage, the eccentricity decreases with the frequency of the rotating magnetic field increasing, but has a peak with the magnetic Bond number increasing. It is hoped that this paper would lay a solid foundation for some potential applications in magnetic biodevices.
doi_str_mv 10.1007/s10665-024-10343-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3040540107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040540107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-37a6b6b28f394b8d902f96575f7c27e52bf09fdf665a3da750bcf2d48a4d836b3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFe_gKeC5-gkkzTtcVn8Bwte9BzSJildum1N2oPf3mhFb54GZn7vzcwj5JrBLQNQd5FBUUgKXFAGKJDKE5IxqZByBXhKMgDOKZSI5-QixgMAVKXgGdlucxvGqXdz3g25yb0LYfT90tnf_jJYF9IojLOZu6HNj6Yd3Nw1ue9cby_JmTd9dFc_dUPeHu5fd090__L4vNvuaZNOmCkqU9RFzUuPlahLWwH3VSGV9CoBTvLaQ-WtT28YtEZJqBvPrSiNsCUWNW7Izeo7hfF9cXHWh3EJQ1qpEQRIAQxUovhKNWGMMTivp9AdTfjQDPRXVHqNSqeo9HdUWiYRrqKY4KF14c_6H9Un2f5rCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040540107</pqid></control><display><type>article</type><title>A droplet in a ferrofluid droplet under a rotating magnetic field</title><source>SpringerLink Journals</source><creator>Zhou, Xinping ; Xiao, Wencai ; Zhang, Qi ; Zhang, Wanqiu ; Zhang, Fei</creator><creatorcontrib>Zhou, Xinping ; Xiao, Wencai ; Zhang, Qi ; Zhang, Wanqiu ; Zhang, Fei</creatorcontrib><description>Two-dimensional (2-D) direct numerical simulations of a compound droplet (a non-magnetizable droplet wrapped in a ferrofluid droplet) suspended in a non-magnetizable ambient fluid under a rotating uniform magnetic field are carried out. The motion and deformation of the compound droplet are studied. The numerical results show that there are two stable states (the concentric and the eccentric states) for the compound droplet at the stable stage, dependent on the frequency of the rotating magnetic field and the magnetic Bond number. The feature of the concentric state for the compound droplet at the stable stage is studied in detail. We find that the inner and outer parts of the compound droplet rotate with the magnetic field, while there is hysteresis between the inner (or outer) droplet and the external magnetic field. The hysteresis effect for the inner droplet is weaker than that of the outer droplet, mainly due to the viscous sweeping effect of the outer droplet on the inner droplet. Increasing the frequency of the external magnetic field, both the phase angle between the inner and outer droplets and the time required for the compound droplet to shift from the stable eccentric state to the stable concentric one will increase. For the eccentric state at the stable stage, the eccentricity decreases with the frequency of the rotating magnetic field increasing, but has a peak with the magnetic Bond number increasing. It is hoped that this paper would lay a solid foundation for some potential applications in magnetic biodevices.</description><identifier>ISSN: 0022-0833</identifier><identifier>EISSN: 1573-2703</identifier><identifier>DOI: 10.1007/s10665-024-10343-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Bond number ; Computational Mathematics and Numerical Analysis ; Direct numerical simulation ; Droplets ; Eccentricity ; Ferrofluids ; Hysteresis ; Magnetic fields ; Mathematical and Computational Engineering ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Rotating fluids ; Rotation ; Theoretical and Applied Mechanics</subject><ispartof>Journal of engineering mathematics, 2024-06, Vol.146 (1), Article 6</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-37a6b6b28f394b8d902f96575f7c27e52bf09fdf665a3da750bcf2d48a4d836b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10665-024-10343-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10665-024-10343-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Zhou, Xinping</creatorcontrib><creatorcontrib>Xiao, Wencai</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Zhang, Wanqiu</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><title>A droplet in a ferrofluid droplet under a rotating magnetic field</title><title>Journal of engineering mathematics</title><addtitle>J Eng Math</addtitle><description>Two-dimensional (2-D) direct numerical simulations of a compound droplet (a non-magnetizable droplet wrapped in a ferrofluid droplet) suspended in a non-magnetizable ambient fluid under a rotating uniform magnetic field are carried out. The motion and deformation of the compound droplet are studied. The numerical results show that there are two stable states (the concentric and the eccentric states) for the compound droplet at the stable stage, dependent on the frequency of the rotating magnetic field and the magnetic Bond number. The feature of the concentric state for the compound droplet at the stable stage is studied in detail. We find that the inner and outer parts of the compound droplet rotate with the magnetic field, while there is hysteresis between the inner (or outer) droplet and the external magnetic field. The hysteresis effect for the inner droplet is weaker than that of the outer droplet, mainly due to the viscous sweeping effect of the outer droplet on the inner droplet. Increasing the frequency of the external magnetic field, both the phase angle between the inner and outer droplets and the time required for the compound droplet to shift from the stable eccentric state to the stable concentric one will increase. For the eccentric state at the stable stage, the eccentricity decreases with the frequency of the rotating magnetic field increasing, but has a peak with the magnetic Bond number increasing. It is hoped that this paper would lay a solid foundation for some potential applications in magnetic biodevices.</description><subject>Applications of Mathematics</subject><subject>Bond number</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Direct numerical simulation</subject><subject>Droplets</subject><subject>Eccentricity</subject><subject>Ferrofluids</subject><subject>Hysteresis</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rotating fluids</subject><subject>Rotation</subject><subject>Theoretical and Applied Mechanics</subject><issn>0022-0833</issn><issn>1573-2703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMoWFe_gKeC5-gkkzTtcVn8Bwte9BzSJildum1N2oPf3mhFb54GZn7vzcwj5JrBLQNQd5FBUUgKXFAGKJDKE5IxqZByBXhKMgDOKZSI5-QixgMAVKXgGdlucxvGqXdz3g25yb0LYfT90tnf_jJYF9IojLOZu6HNj6Yd3Nw1ue9cby_JmTd9dFc_dUPeHu5fd090__L4vNvuaZNOmCkqU9RFzUuPlahLWwH3VSGV9CoBTvLaQ-WtT28YtEZJqBvPrSiNsCUWNW7Izeo7hfF9cXHWh3EJQ1qpEQRIAQxUovhKNWGMMTivp9AdTfjQDPRXVHqNSqeo9HdUWiYRrqKY4KF14c_6H9Un2f5rCg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zhou, Xinping</creator><creator>Xiao, Wencai</creator><creator>Zhang, Qi</creator><creator>Zhang, Wanqiu</creator><creator>Zhang, Fei</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>A droplet in a ferrofluid droplet under a rotating magnetic field</title><author>Zhou, Xinping ; Xiao, Wencai ; Zhang, Qi ; Zhang, Wanqiu ; Zhang, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-37a6b6b28f394b8d902f96575f7c27e52bf09fdf665a3da750bcf2d48a4d836b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Bond number</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Direct numerical simulation</topic><topic>Droplets</topic><topic>Eccentricity</topic><topic>Ferrofluids</topic><topic>Hysteresis</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rotating fluids</topic><topic>Rotation</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xinping</creatorcontrib><creatorcontrib>Xiao, Wencai</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Zhang, Wanqiu</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xinping</au><au>Xiao, Wencai</au><au>Zhang, Qi</au><au>Zhang, Wanqiu</au><au>Zhang, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A droplet in a ferrofluid droplet under a rotating magnetic field</atitle><jtitle>Journal of engineering mathematics</jtitle><stitle>J Eng Math</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>146</volume><issue>1</issue><artnum>6</artnum><issn>0022-0833</issn><eissn>1573-2703</eissn><abstract>Two-dimensional (2-D) direct numerical simulations of a compound droplet (a non-magnetizable droplet wrapped in a ferrofluid droplet) suspended in a non-magnetizable ambient fluid under a rotating uniform magnetic field are carried out. The motion and deformation of the compound droplet are studied. The numerical results show that there are two stable states (the concentric and the eccentric states) for the compound droplet at the stable stage, dependent on the frequency of the rotating magnetic field and the magnetic Bond number. The feature of the concentric state for the compound droplet at the stable stage is studied in detail. We find that the inner and outer parts of the compound droplet rotate with the magnetic field, while there is hysteresis between the inner (or outer) droplet and the external magnetic field. The hysteresis effect for the inner droplet is weaker than that of the outer droplet, mainly due to the viscous sweeping effect of the outer droplet on the inner droplet. Increasing the frequency of the external magnetic field, both the phase angle between the inner and outer droplets and the time required for the compound droplet to shift from the stable eccentric state to the stable concentric one will increase. For the eccentric state at the stable stage, the eccentricity decreases with the frequency of the rotating magnetic field increasing, but has a peak with the magnetic Bond number increasing. It is hoped that this paper would lay a solid foundation for some potential applications in magnetic biodevices.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10665-024-10343-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-0833
ispartof Journal of engineering mathematics, 2024-06, Vol.146 (1), Article 6
issn 0022-0833
1573-2703
language eng
recordid cdi_proquest_journals_3040540107
source SpringerLink Journals
subjects Applications of Mathematics
Bond number
Computational Mathematics and Numerical Analysis
Direct numerical simulation
Droplets
Eccentricity
Ferrofluids
Hysteresis
Magnetic fields
Mathematical and Computational Engineering
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Rotating fluids
Rotation
Theoretical and Applied Mechanics
title A droplet in a ferrofluid droplet under a rotating magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20droplet%20in%20a%20ferrofluid%20droplet%20under%20a%20rotating%20magnetic%20field&rft.jtitle=Journal%20of%20engineering%20mathematics&rft.au=Zhou,%20Xinping&rft.date=2024-06-01&rft.volume=146&rft.issue=1&rft.artnum=6&rft.issn=0022-0833&rft.eissn=1573-2703&rft_id=info:doi/10.1007/s10665-024-10343-5&rft_dat=%3Cproquest_cross%3E3040540107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040540107&rft_id=info:pmid/&rfr_iscdi=true