Over 18.8% Efficiency of Layer‐By‐Layer Organic Photovoltaics Enabled by Ameliorating Exciton Utilization in Acceptor Layer
The layer‐by‐layer (LbL) organic photovoltaics (OPVs) are constructed with wide‐bandgap donor PM1 and narrow‐bandgap acceptor L8‐BO. The exciton utilization near cathode is still challenging considering restricted diffusion distance of excitons and inability for transferring energy from L8‐BO to PM1...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-04, Vol.34 (16), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Tian, Hongyue Xu, Wenjing Liu, Zhongyuan Xie, Yongchao Zhang, Wenqing Xu, Yujie Jeong, Sang Young Zhang, Fenghua Weng, Nan Zhang, Zijian Wang, Kai Sun, Qianqian Zhang, Jian Li, Xiong Du, Xiaoyan Hao, Xiaotao Woo, Han Young Ma, Xiaoling Zhang, Fujun |
description | The layer‐by‐layer (LbL) organic photovoltaics (OPVs) are constructed with wide‐bandgap donor PM1 and narrow‐bandgap acceptor L8‐BO. The exciton utilization near cathode is still challenging considering restricted diffusion distance of excitons and inability for transferring energy from L8‐BO to PM1. Herein, donor incorporation into acceptor layer (DIA) strategy is employed to improve exciton utilization near cathode. The efficiency of LbL OPVs can be improved from 18.02% to 18.81% by incorporating 10 wt% PM1 into L8‐BO layer, which is closely associated with efficient exciton separation into L8‐BO layer originated from more adequate donor/acceptor interface for faster charge transfer, as evidenced by magneto‐photocurrent and transient absorption results. The in situ test and morphological characterization clarify that molecular packing property can be improved benefited from prolonged aggregation and nucleation time of acceptor layer assisted by DIA strategy, contributing to more efficient charge transport and inhibited charge recombination in active layers. The thickness insensitive property of LbL OPVs can be also improved induced by DIA strategy, indicated by PCE retention value (82.2% vs. 74.0%) for PM1/L8‐BO:PM1 and PM1/L8‐BO OPVs when acceptor layer thickness increased to ≈180 nm. This work demonstrates the effectiveness of DIA strategy in improving efficiency and thickness tolerance of LbL OPVs.
The exciton utilization near the cathode of LbL OPVs is still challenging due to the restricted diffusion distance of excitons. By incorporating less PM1 into the L8‐BO layer, an optimal PCE of 18.81% can be achieved benefiting from more efficient exciton separation in the L8‐BO layer near the cathode, as well as more ordered molecular arrangement for charge transport and collection. |
doi_str_mv | 10.1002/adfm.202313751 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3040187495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040187495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-82074151c88d3da2bfe9dce4a992b09cc7968ee171fc90571da77a0144bfabf73</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhSMEEqWwMltCjA2-cVLbYygpIBWVgUpskePYxVUaFycthAUegWfkSUgJKiPL_dN37pGO550C9gHj4ELkeukHOCBAaAR7Xg-GMBwQHLD93QyPh95RVS0wBkpJ2PPepxvlEDCfnaNEayONKmWDrEYT0Sj39fF52bTlZ0FTNxelkej-ydZ2Y4taGFmhpBRZoXKUNSheqsJYJ2pTzlHyKk1tSzSrTWHe2ls7mxLFUqpVbV1ncOwdaFFU6uS3973ZOHkY3Qwm0-vbUTwZSAIUBizANIQIJGM5yUWQacVzqULBeZBhLiXlQ6ZUi2rJcUQhF5QKDGGYaZFpSvreWfd35ezzWlV1urBrV7aWKcEhBkZDHrWU31HS2apySqcrZ5bCNSngdBtyug053YXcCngneDGFav6h0_hqfPen_QbAhIMr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040187495</pqid></control><display><type>article</type><title>Over 18.8% Efficiency of Layer‐By‐Layer Organic Photovoltaics Enabled by Ameliorating Exciton Utilization in Acceptor Layer</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tian, Hongyue ; Xu, Wenjing ; Liu, Zhongyuan ; Xie, Yongchao ; Zhang, Wenqing ; Xu, Yujie ; Jeong, Sang Young ; Zhang, Fenghua ; Weng, Nan ; Zhang, Zijian ; Wang, Kai ; Sun, Qianqian ; Zhang, Jian ; Li, Xiong ; Du, Xiaoyan ; Hao, Xiaotao ; Woo, Han Young ; Ma, Xiaoling ; Zhang, Fujun</creator><creatorcontrib>Tian, Hongyue ; Xu, Wenjing ; Liu, Zhongyuan ; Xie, Yongchao ; Zhang, Wenqing ; Xu, Yujie ; Jeong, Sang Young ; Zhang, Fenghua ; Weng, Nan ; Zhang, Zijian ; Wang, Kai ; Sun, Qianqian ; Zhang, Jian ; Li, Xiong ; Du, Xiaoyan ; Hao, Xiaotao ; Woo, Han Young ; Ma, Xiaoling ; Zhang, Fujun</creatorcontrib><description>The layer‐by‐layer (LbL) organic photovoltaics (OPVs) are constructed with wide‐bandgap donor PM1 and narrow‐bandgap acceptor L8‐BO. The exciton utilization near cathode is still challenging considering restricted diffusion distance of excitons and inability for transferring energy from L8‐BO to PM1. Herein, donor incorporation into acceptor layer (DIA) strategy is employed to improve exciton utilization near cathode. The efficiency of LbL OPVs can be improved from 18.02% to 18.81% by incorporating 10 wt% PM1 into L8‐BO layer, which is closely associated with efficient exciton separation into L8‐BO layer originated from more adequate donor/acceptor interface for faster charge transfer, as evidenced by magneto‐photocurrent and transient absorption results. The in situ test and morphological characterization clarify that molecular packing property can be improved benefited from prolonged aggregation and nucleation time of acceptor layer assisted by DIA strategy, contributing to more efficient charge transport and inhibited charge recombination in active layers. The thickness insensitive property of LbL OPVs can be also improved induced by DIA strategy, indicated by PCE retention value (82.2% vs. 74.0%) for PM1/L8‐BO:PM1 and PM1/L8‐BO OPVs when acceptor layer thickness increased to ≈180 nm. This work demonstrates the effectiveness of DIA strategy in improving efficiency and thickness tolerance of LbL OPVs.
The exciton utilization near the cathode of LbL OPVs is still challenging due to the restricted diffusion distance of excitons. By incorporating less PM1 into the L8‐BO layer, an optimal PCE of 18.81% can be achieved benefiting from more efficient exciton separation in the L8‐BO layer near the cathode, as well as more ordered molecular arrangement for charge transport and collection.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202313751</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Charge transfer ; Charge transport ; donor incorporation into acceptor layer strategy ; Efficiency ; Energy gap ; exciton utilization ; Excitons ; Field tests ; layer by layer ; Nucleation ; organic photovoltaics ; Photoelectric effect ; Photovoltaic cells ; Thickness ; thickness tolerance ; Utilization</subject><ispartof>Advanced functional materials, 2024-04, Vol.34 (16), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-82074151c88d3da2bfe9dce4a992b09cc7968ee171fc90571da77a0144bfabf73</citedby><cites>FETCH-LOGICAL-c3171-82074151c88d3da2bfe9dce4a992b09cc7968ee171fc90571da77a0144bfabf73</cites><orcidid>0000-0003-2829-0735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202313751$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202313751$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tian, Hongyue</creatorcontrib><creatorcontrib>Xu, Wenjing</creatorcontrib><creatorcontrib>Liu, Zhongyuan</creatorcontrib><creatorcontrib>Xie, Yongchao</creatorcontrib><creatorcontrib>Zhang, Wenqing</creatorcontrib><creatorcontrib>Xu, Yujie</creatorcontrib><creatorcontrib>Jeong, Sang Young</creatorcontrib><creatorcontrib>Zhang, Fenghua</creatorcontrib><creatorcontrib>Weng, Nan</creatorcontrib><creatorcontrib>Zhang, Zijian</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Sun, Qianqian</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Li, Xiong</creatorcontrib><creatorcontrib>Du, Xiaoyan</creatorcontrib><creatorcontrib>Hao, Xiaotao</creatorcontrib><creatorcontrib>Woo, Han Young</creatorcontrib><creatorcontrib>Ma, Xiaoling</creatorcontrib><creatorcontrib>Zhang, Fujun</creatorcontrib><title>Over 18.8% Efficiency of Layer‐By‐Layer Organic Photovoltaics Enabled by Ameliorating Exciton Utilization in Acceptor Layer</title><title>Advanced functional materials</title><description>The layer‐by‐layer (LbL) organic photovoltaics (OPVs) are constructed with wide‐bandgap donor PM1 and narrow‐bandgap acceptor L8‐BO. The exciton utilization near cathode is still challenging considering restricted diffusion distance of excitons and inability for transferring energy from L8‐BO to PM1. Herein, donor incorporation into acceptor layer (DIA) strategy is employed to improve exciton utilization near cathode. The efficiency of LbL OPVs can be improved from 18.02% to 18.81% by incorporating 10 wt% PM1 into L8‐BO layer, which is closely associated with efficient exciton separation into L8‐BO layer originated from more adequate donor/acceptor interface for faster charge transfer, as evidenced by magneto‐photocurrent and transient absorption results. The in situ test and morphological characterization clarify that molecular packing property can be improved benefited from prolonged aggregation and nucleation time of acceptor layer assisted by DIA strategy, contributing to more efficient charge transport and inhibited charge recombination in active layers. The thickness insensitive property of LbL OPVs can be also improved induced by DIA strategy, indicated by PCE retention value (82.2% vs. 74.0%) for PM1/L8‐BO:PM1 and PM1/L8‐BO OPVs when acceptor layer thickness increased to ≈180 nm. This work demonstrates the effectiveness of DIA strategy in improving efficiency and thickness tolerance of LbL OPVs.
The exciton utilization near the cathode of LbL OPVs is still challenging due to the restricted diffusion distance of excitons. By incorporating less PM1 into the L8‐BO layer, an optimal PCE of 18.81% can be achieved benefiting from more efficient exciton separation in the L8‐BO layer near the cathode, as well as more ordered molecular arrangement for charge transport and collection.</description><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Charge transport</subject><subject>donor incorporation into acceptor layer strategy</subject><subject>Efficiency</subject><subject>Energy gap</subject><subject>exciton utilization</subject><subject>Excitons</subject><subject>Field tests</subject><subject>layer by layer</subject><subject>Nucleation</subject><subject>organic photovoltaics</subject><subject>Photoelectric effect</subject><subject>Photovoltaic cells</subject><subject>Thickness</subject><subject>thickness tolerance</subject><subject>Utilization</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhSMEEqWwMltCjA2-cVLbYygpIBWVgUpskePYxVUaFycthAUegWfkSUgJKiPL_dN37pGO550C9gHj4ELkeukHOCBAaAR7Xg-GMBwQHLD93QyPh95RVS0wBkpJ2PPepxvlEDCfnaNEayONKmWDrEYT0Sj39fF52bTlZ0FTNxelkej-ydZ2Y4taGFmhpBRZoXKUNSheqsJYJ2pTzlHyKk1tSzSrTWHe2ls7mxLFUqpVbV1ncOwdaFFU6uS3973ZOHkY3Qwm0-vbUTwZSAIUBizANIQIJGM5yUWQacVzqULBeZBhLiXlQ6ZUi2rJcUQhF5QKDGGYaZFpSvreWfd35ezzWlV1urBrV7aWKcEhBkZDHrWU31HS2apySqcrZ5bCNSngdBtyug053YXcCngneDGFav6h0_hqfPen_QbAhIMr</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Tian, Hongyue</creator><creator>Xu, Wenjing</creator><creator>Liu, Zhongyuan</creator><creator>Xie, Yongchao</creator><creator>Zhang, Wenqing</creator><creator>Xu, Yujie</creator><creator>Jeong, Sang Young</creator><creator>Zhang, Fenghua</creator><creator>Weng, Nan</creator><creator>Zhang, Zijian</creator><creator>Wang, Kai</creator><creator>Sun, Qianqian</creator><creator>Zhang, Jian</creator><creator>Li, Xiong</creator><creator>Du, Xiaoyan</creator><creator>Hao, Xiaotao</creator><creator>Woo, Han Young</creator><creator>Ma, Xiaoling</creator><creator>Zhang, Fujun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2829-0735</orcidid></search><sort><creationdate>20240401</creationdate><title>Over 18.8% Efficiency of Layer‐By‐Layer Organic Photovoltaics Enabled by Ameliorating Exciton Utilization in Acceptor Layer</title><author>Tian, Hongyue ; Xu, Wenjing ; Liu, Zhongyuan ; Xie, Yongchao ; Zhang, Wenqing ; Xu, Yujie ; Jeong, Sang Young ; Zhang, Fenghua ; Weng, Nan ; Zhang, Zijian ; Wang, Kai ; Sun, Qianqian ; Zhang, Jian ; Li, Xiong ; Du, Xiaoyan ; Hao, Xiaotao ; Woo, Han Young ; Ma, Xiaoling ; Zhang, Fujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-82074151c88d3da2bfe9dce4a992b09cc7968ee171fc90571da77a0144bfabf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Charge transport</topic><topic>donor incorporation into acceptor layer strategy</topic><topic>Efficiency</topic><topic>Energy gap</topic><topic>exciton utilization</topic><topic>Excitons</topic><topic>Field tests</topic><topic>layer by layer</topic><topic>Nucleation</topic><topic>organic photovoltaics</topic><topic>Photoelectric effect</topic><topic>Photovoltaic cells</topic><topic>Thickness</topic><topic>thickness tolerance</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Hongyue</creatorcontrib><creatorcontrib>Xu, Wenjing</creatorcontrib><creatorcontrib>Liu, Zhongyuan</creatorcontrib><creatorcontrib>Xie, Yongchao</creatorcontrib><creatorcontrib>Zhang, Wenqing</creatorcontrib><creatorcontrib>Xu, Yujie</creatorcontrib><creatorcontrib>Jeong, Sang Young</creatorcontrib><creatorcontrib>Zhang, Fenghua</creatorcontrib><creatorcontrib>Weng, Nan</creatorcontrib><creatorcontrib>Zhang, Zijian</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Sun, Qianqian</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Li, Xiong</creatorcontrib><creatorcontrib>Du, Xiaoyan</creatorcontrib><creatorcontrib>Hao, Xiaotao</creatorcontrib><creatorcontrib>Woo, Han Young</creatorcontrib><creatorcontrib>Ma, Xiaoling</creatorcontrib><creatorcontrib>Zhang, Fujun</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Hongyue</au><au>Xu, Wenjing</au><au>Liu, Zhongyuan</au><au>Xie, Yongchao</au><au>Zhang, Wenqing</au><au>Xu, Yujie</au><au>Jeong, Sang Young</au><au>Zhang, Fenghua</au><au>Weng, Nan</au><au>Zhang, Zijian</au><au>Wang, Kai</au><au>Sun, Qianqian</au><au>Zhang, Jian</au><au>Li, Xiong</au><au>Du, Xiaoyan</au><au>Hao, Xiaotao</au><au>Woo, Han Young</au><au>Ma, Xiaoling</au><au>Zhang, Fujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Over 18.8% Efficiency of Layer‐By‐Layer Organic Photovoltaics Enabled by Ameliorating Exciton Utilization in Acceptor Layer</atitle><jtitle>Advanced functional materials</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>34</volume><issue>16</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The layer‐by‐layer (LbL) organic photovoltaics (OPVs) are constructed with wide‐bandgap donor PM1 and narrow‐bandgap acceptor L8‐BO. The exciton utilization near cathode is still challenging considering restricted diffusion distance of excitons and inability for transferring energy from L8‐BO to PM1. Herein, donor incorporation into acceptor layer (DIA) strategy is employed to improve exciton utilization near cathode. The efficiency of LbL OPVs can be improved from 18.02% to 18.81% by incorporating 10 wt% PM1 into L8‐BO layer, which is closely associated with efficient exciton separation into L8‐BO layer originated from more adequate donor/acceptor interface for faster charge transfer, as evidenced by magneto‐photocurrent and transient absorption results. The in situ test and morphological characterization clarify that molecular packing property can be improved benefited from prolonged aggregation and nucleation time of acceptor layer assisted by DIA strategy, contributing to more efficient charge transport and inhibited charge recombination in active layers. The thickness insensitive property of LbL OPVs can be also improved induced by DIA strategy, indicated by PCE retention value (82.2% vs. 74.0%) for PM1/L8‐BO:PM1 and PM1/L8‐BO OPVs when acceptor layer thickness increased to ≈180 nm. This work demonstrates the effectiveness of DIA strategy in improving efficiency and thickness tolerance of LbL OPVs.
The exciton utilization near the cathode of LbL OPVs is still challenging due to the restricted diffusion distance of excitons. By incorporating less PM1 into the L8‐BO layer, an optimal PCE of 18.81% can be achieved benefiting from more efficient exciton separation in the L8‐BO layer near the cathode, as well as more ordered molecular arrangement for charge transport and collection.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202313751</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2829-0735</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-04, Vol.34 (16), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3040187495 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Cathodes Charge transfer Charge transport donor incorporation into acceptor layer strategy Efficiency Energy gap exciton utilization Excitons Field tests layer by layer Nucleation organic photovoltaics Photoelectric effect Photovoltaic cells Thickness thickness tolerance Utilization |
title | Over 18.8% Efficiency of Layer‐By‐Layer Organic Photovoltaics Enabled by Ameliorating Exciton Utilization in Acceptor Layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Over%2018.8%25%20Efficiency%20of%20Layer%E2%80%90By%E2%80%90Layer%20Organic%20Photovoltaics%20Enabled%20by%20Ameliorating%20Exciton%20Utilization%20in%20Acceptor%20Layer&rft.jtitle=Advanced%20functional%20materials&rft.au=Tian,%20Hongyue&rft.date=2024-04-01&rft.volume=34&rft.issue=16&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202313751&rft_dat=%3Cproquest_cross%3E3040187495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040187495&rft_id=info:pmid/&rfr_iscdi=true |