Symplectic Sparsest Mode Decomposition and its Application in Rolling Bearing Fault Diagnosis

A heated and challenging area of fault diagnostic research has been separating the rolling bearing problem feature information from severe noise disruption. The Symplectic Geometry Mode Decomposition (SGMD) has been effectively applied to rolling bearings with the advantage that it does not involve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-04, Vol.24 (8), p.1-1
Hauptverfasser: Liu, Yanfei, Cheng, Junsheng, Yang, Yu, Zheng, Jinde, Pan, Haiyang, Yang, Xingkai, Bin, Guangfu, Sheng, Yiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 8
container_start_page 1
container_title IEEE sensors journal
container_volume 24
creator Liu, Yanfei
Cheng, Junsheng
Yang, Yu
Zheng, Jinde
Pan, Haiyang
Yang, Xingkai
Bin, Guangfu
Sheng, Yiping
description A heated and challenging area of fault diagnostic research has been separating the rolling bearing problem feature information from severe noise disruption. The Symplectic Geometry Mode Decomposition (SGMD) has been effectively applied to rolling bearings with the advantage that it does not involve the subjective definition of parameters and eliminates noise when efficiently reconstructing the modes. Yet, it possesses the following shortcomings the invalid symplectic geometry component (SGC) affects the decomposition accuracy, and the physical meaning of the decomposition results is unclear. Inspired by nonparametric adaptive signal decomposition methods such as SGMD and Matching Pursuit (MP), the paper proposes the Symplectic Sparsest Mode Decomposition (SSMD) method. SSMD first constructs a library of symplectic geometry atoms and constrains the number of atoms by energy threshold, which effectively improves the decomposition speed; then, the quality of atoms and the robustness of the algorithm are improved by initialized adaptive noise reduction of symplectic geometry atoms; finally, symplectic geometry atoms are optimally reconstructed by genetic algorithms with the regularized locally narrowband operator as the optimization target, which obtains the sparsest solution of symplectic geometry mode components while constraining the decomposition result to be locally narrowband signals, so as to make better physical meaning of decomposition results. The comparative analysis results of simulation and experiment show that SSMD has obvious advantages in decomposition accuracy and noise robustness, and is more efficient relative to the decomposition of SGMD.
doi_str_mv 10.1109/JSEN.2024.3370959
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3040056016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10460386</ieee_id><sourcerecordid>3040056016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-61791741db4da020b35a73b4fa01154603e9329143fe1d324d014ddfa69484f23</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgsLLFOmYmdh5elDx4qIFGQ2CDLjZ3KVRoHO13070loF6xmNLp35s4h5BphhAji7nk5ex3FEPMRYxmIRJyQASZJHmHG89O-ZxBxln2dk4sQNgAosiQbkO_lfttUpmhtQZeN8sGElr44bejUFG7buGBb62qqak1tG-i4aSpbqL-Zrem7qypbr-m9Ub6vc7WrWjq1al13znBJzkpVBXN1rEPyOZ99TB6jxdvD02S8iIpY8DZKMRNdTtQrrhXEsGKJytiKlwoQE54CM4LFAjkrDWoWcw3ItS5VKnjOy5gNye1hb-Pdz657QW7cztfdScmAAyQpYNqp8KAqvAvBm1I23m6V30sE2VOUPUXZU5RHip3n5uCxxph_-j5UnrJfvmVtlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040056016</pqid></control><display><type>article</type><title>Symplectic Sparsest Mode Decomposition and its Application in Rolling Bearing Fault Diagnosis</title><source>IEEE/IET Electronic Library</source><creator>Liu, Yanfei ; Cheng, Junsheng ; Yang, Yu ; Zheng, Jinde ; Pan, Haiyang ; Yang, Xingkai ; Bin, Guangfu ; Sheng, Yiping</creator><creatorcontrib>Liu, Yanfei ; Cheng, Junsheng ; Yang, Yu ; Zheng, Jinde ; Pan, Haiyang ; Yang, Xingkai ; Bin, Guangfu ; Sheng, Yiping</creatorcontrib><description>A heated and challenging area of fault diagnostic research has been separating the rolling bearing problem feature information from severe noise disruption. The Symplectic Geometry Mode Decomposition (SGMD) has been effectively applied to rolling bearings with the advantage that it does not involve the subjective definition of parameters and eliminates noise when efficiently reconstructing the modes. Yet, it possesses the following shortcomings the invalid symplectic geometry component (SGC) affects the decomposition accuracy, and the physical meaning of the decomposition results is unclear. Inspired by nonparametric adaptive signal decomposition methods such as SGMD and Matching Pursuit (MP), the paper proposes the Symplectic Sparsest Mode Decomposition (SSMD) method. SSMD first constructs a library of symplectic geometry atoms and constrains the number of atoms by energy threshold, which effectively improves the decomposition speed; then, the quality of atoms and the robustness of the algorithm are improved by initialized adaptive noise reduction of symplectic geometry atoms; finally, symplectic geometry atoms are optimally reconstructed by genetic algorithms with the regularized locally narrowband operator as the optimization target, which obtains the sparsest solution of symplectic geometry mode components while constraining the decomposition result to be locally narrowband signals, so as to make better physical meaning of decomposition results. The comparative analysis results of simulation and experiment show that SSMD has obvious advantages in decomposition accuracy and noise robustness, and is more efficient relative to the decomposition of SGMD.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3370959</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atomic properties ; Decomposition ; Fault diagnosis ; Feature extraction ; Genetic algorithms ; Geometry ; Locally narrowband operator ; Matched pursuit ; Matching pursuit algorithms ; Matrix decomposition ; Narrowband ; Noise reduction ; Robustness ; Roller bearings ; Rolling bearings ; Sensors ; Symplectic sparsest mode decomposition</subject><ispartof>IEEE sensors journal, 2024-04, Vol.24 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-61791741db4da020b35a73b4fa01154603e9329143fe1d324d014ddfa69484f23</citedby><cites>FETCH-LOGICAL-c294t-61791741db4da020b35a73b4fa01154603e9329143fe1d324d014ddfa69484f23</cites><orcidid>0009-0009-1587-6324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10460386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10460386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yanfei</creatorcontrib><creatorcontrib>Cheng, Junsheng</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Zheng, Jinde</creatorcontrib><creatorcontrib>Pan, Haiyang</creatorcontrib><creatorcontrib>Yang, Xingkai</creatorcontrib><creatorcontrib>Bin, Guangfu</creatorcontrib><creatorcontrib>Sheng, Yiping</creatorcontrib><title>Symplectic Sparsest Mode Decomposition and its Application in Rolling Bearing Fault Diagnosis</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>A heated and challenging area of fault diagnostic research has been separating the rolling bearing problem feature information from severe noise disruption. The Symplectic Geometry Mode Decomposition (SGMD) has been effectively applied to rolling bearings with the advantage that it does not involve the subjective definition of parameters and eliminates noise when efficiently reconstructing the modes. Yet, it possesses the following shortcomings the invalid symplectic geometry component (SGC) affects the decomposition accuracy, and the physical meaning of the decomposition results is unclear. Inspired by nonparametric adaptive signal decomposition methods such as SGMD and Matching Pursuit (MP), the paper proposes the Symplectic Sparsest Mode Decomposition (SSMD) method. SSMD first constructs a library of symplectic geometry atoms and constrains the number of atoms by energy threshold, which effectively improves the decomposition speed; then, the quality of atoms and the robustness of the algorithm are improved by initialized adaptive noise reduction of symplectic geometry atoms; finally, symplectic geometry atoms are optimally reconstructed by genetic algorithms with the regularized locally narrowband operator as the optimization target, which obtains the sparsest solution of symplectic geometry mode components while constraining the decomposition result to be locally narrowband signals, so as to make better physical meaning of decomposition results. The comparative analysis results of simulation and experiment show that SSMD has obvious advantages in decomposition accuracy and noise robustness, and is more efficient relative to the decomposition of SGMD.</description><subject>Atomic properties</subject><subject>Decomposition</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Genetic algorithms</subject><subject>Geometry</subject><subject>Locally narrowband operator</subject><subject>Matched pursuit</subject><subject>Matching pursuit algorithms</subject><subject>Matrix decomposition</subject><subject>Narrowband</subject><subject>Noise reduction</subject><subject>Robustness</subject><subject>Roller bearings</subject><subject>Rolling bearings</subject><subject>Sensors</subject><subject>Symplectic sparsest mode decomposition</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgsLLFOmYmdh5elDx4qIFGQ2CDLjZ3KVRoHO13070loF6xmNLp35s4h5BphhAji7nk5ex3FEPMRYxmIRJyQASZJHmHG89O-ZxBxln2dk4sQNgAosiQbkO_lfttUpmhtQZeN8sGElr44bejUFG7buGBb62qqak1tG-i4aSpbqL-Zrem7qypbr-m9Ub6vc7WrWjq1al13znBJzkpVBXN1rEPyOZ99TB6jxdvD02S8iIpY8DZKMRNdTtQrrhXEsGKJytiKlwoQE54CM4LFAjkrDWoWcw3ItS5VKnjOy5gNye1hb-Pdz657QW7cztfdScmAAyQpYNqp8KAqvAvBm1I23m6V30sE2VOUPUXZU5RHip3n5uCxxph_-j5UnrJfvmVtlQ</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Liu, Yanfei</creator><creator>Cheng, Junsheng</creator><creator>Yang, Yu</creator><creator>Zheng, Jinde</creator><creator>Pan, Haiyang</creator><creator>Yang, Xingkai</creator><creator>Bin, Guangfu</creator><creator>Sheng, Yiping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-1587-6324</orcidid></search><sort><creationdate>20240415</creationdate><title>Symplectic Sparsest Mode Decomposition and its Application in Rolling Bearing Fault Diagnosis</title><author>Liu, Yanfei ; Cheng, Junsheng ; Yang, Yu ; Zheng, Jinde ; Pan, Haiyang ; Yang, Xingkai ; Bin, Guangfu ; Sheng, Yiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-61791741db4da020b35a73b4fa01154603e9329143fe1d324d014ddfa69484f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic properties</topic><topic>Decomposition</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Genetic algorithms</topic><topic>Geometry</topic><topic>Locally narrowband operator</topic><topic>Matched pursuit</topic><topic>Matching pursuit algorithms</topic><topic>Matrix decomposition</topic><topic>Narrowband</topic><topic>Noise reduction</topic><topic>Robustness</topic><topic>Roller bearings</topic><topic>Rolling bearings</topic><topic>Sensors</topic><topic>Symplectic sparsest mode decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanfei</creatorcontrib><creatorcontrib>Cheng, Junsheng</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Zheng, Jinde</creatorcontrib><creatorcontrib>Pan, Haiyang</creatorcontrib><creatorcontrib>Yang, Xingkai</creatorcontrib><creatorcontrib>Bin, Guangfu</creatorcontrib><creatorcontrib>Sheng, Yiping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yanfei</au><au>Cheng, Junsheng</au><au>Yang, Yu</au><au>Zheng, Jinde</au><au>Pan, Haiyang</au><au>Yang, Xingkai</au><au>Bin, Guangfu</au><au>Sheng, Yiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symplectic Sparsest Mode Decomposition and its Application in Rolling Bearing Fault Diagnosis</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-04-15</date><risdate>2024</risdate><volume>24</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>A heated and challenging area of fault diagnostic research has been separating the rolling bearing problem feature information from severe noise disruption. The Symplectic Geometry Mode Decomposition (SGMD) has been effectively applied to rolling bearings with the advantage that it does not involve the subjective definition of parameters and eliminates noise when efficiently reconstructing the modes. Yet, it possesses the following shortcomings the invalid symplectic geometry component (SGC) affects the decomposition accuracy, and the physical meaning of the decomposition results is unclear. Inspired by nonparametric adaptive signal decomposition methods such as SGMD and Matching Pursuit (MP), the paper proposes the Symplectic Sparsest Mode Decomposition (SSMD) method. SSMD first constructs a library of symplectic geometry atoms and constrains the number of atoms by energy threshold, which effectively improves the decomposition speed; then, the quality of atoms and the robustness of the algorithm are improved by initialized adaptive noise reduction of symplectic geometry atoms; finally, symplectic geometry atoms are optimally reconstructed by genetic algorithms with the regularized locally narrowband operator as the optimization target, which obtains the sparsest solution of symplectic geometry mode components while constraining the decomposition result to be locally narrowband signals, so as to make better physical meaning of decomposition results. The comparative analysis results of simulation and experiment show that SSMD has obvious advantages in decomposition accuracy and noise robustness, and is more efficient relative to the decomposition of SGMD.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3370959</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0009-1587-6324</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-04, Vol.24 (8), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_3040056016
source IEEE/IET Electronic Library
subjects Atomic properties
Decomposition
Fault diagnosis
Feature extraction
Genetic algorithms
Geometry
Locally narrowband operator
Matched pursuit
Matching pursuit algorithms
Matrix decomposition
Narrowband
Noise reduction
Robustness
Roller bearings
Rolling bearings
Sensors
Symplectic sparsest mode decomposition
title Symplectic Sparsest Mode Decomposition and its Application in Rolling Bearing Fault Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symplectic%20Sparsest%20Mode%20Decomposition%20and%20its%20Application%20in%20Rolling%20Bearing%20Fault%20Diagnosis&rft.jtitle=IEEE%20sensors%20journal&rft.au=Liu,%20Yanfei&rft.date=2024-04-15&rft.volume=24&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3370959&rft_dat=%3Cproquest_RIE%3E3040056016%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040056016&rft_id=info:pmid/&rft_ieee_id=10460386&rfr_iscdi=true