Symplectic Sparsest Mode Decomposition and its Application in Rolling Bearing Fault Diagnosis
A heated and challenging area of fault diagnostic research has been separating the rolling bearing problem feature information from severe noise disruption. The Symplectic Geometry Mode Decomposition (SGMD) has been effectively applied to rolling bearings with the advantage that it does not involve...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-04, Vol.24 (8), p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Liu, Yanfei Cheng, Junsheng Yang, Yu Zheng, Jinde Pan, Haiyang Yang, Xingkai Bin, Guangfu Sheng, Yiping |
description | A heated and challenging area of fault diagnostic research has been separating the rolling bearing problem feature information from severe noise disruption. The Symplectic Geometry Mode Decomposition (SGMD) has been effectively applied to rolling bearings with the advantage that it does not involve the subjective definition of parameters and eliminates noise when efficiently reconstructing the modes. Yet, it possesses the following shortcomings the invalid symplectic geometry component (SGC) affects the decomposition accuracy, and the physical meaning of the decomposition results is unclear. Inspired by nonparametric adaptive signal decomposition methods such as SGMD and Matching Pursuit (MP), the paper proposes the Symplectic Sparsest Mode Decomposition (SSMD) method. SSMD first constructs a library of symplectic geometry atoms and constrains the number of atoms by energy threshold, which effectively improves the decomposition speed; then, the quality of atoms and the robustness of the algorithm are improved by initialized adaptive noise reduction of symplectic geometry atoms; finally, symplectic geometry atoms are optimally reconstructed by genetic algorithms with the regularized locally narrowband operator as the optimization target, which obtains the sparsest solution of symplectic geometry mode components while constraining the decomposition result to be locally narrowband signals, so as to make better physical meaning of decomposition results. The comparative analysis results of simulation and experiment show that SSMD has obvious advantages in decomposition accuracy and noise robustness, and is more efficient relative to the decomposition of SGMD. |
doi_str_mv | 10.1109/JSEN.2024.3370959 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3040056016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10460386</ieee_id><sourcerecordid>3040056016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-61791741db4da020b35a73b4fa01154603e9329143fe1d324d014ddfa69484f23</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgsLLFOmYmdh5elDx4qIFGQ2CDLjZ3KVRoHO13070loF6xmNLp35s4h5BphhAji7nk5ex3FEPMRYxmIRJyQASZJHmHG89O-ZxBxln2dk4sQNgAosiQbkO_lfttUpmhtQZeN8sGElr44bejUFG7buGBb62qqak1tG-i4aSpbqL-Zrem7qypbr-m9Ub6vc7WrWjq1al13znBJzkpVBXN1rEPyOZ99TB6jxdvD02S8iIpY8DZKMRNdTtQrrhXEsGKJytiKlwoQE54CM4LFAjkrDWoWcw3ItS5VKnjOy5gNye1hb-Pdz657QW7cztfdScmAAyQpYNqp8KAqvAvBm1I23m6V30sE2VOUPUXZU5RHip3n5uCxxph_-j5UnrJfvmVtlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040056016</pqid></control><display><type>article</type><title>Symplectic Sparsest Mode Decomposition and its Application in Rolling Bearing Fault Diagnosis</title><source>IEEE/IET Electronic Library</source><creator>Liu, Yanfei ; Cheng, Junsheng ; Yang, Yu ; Zheng, Jinde ; Pan, Haiyang ; Yang, Xingkai ; Bin, Guangfu ; Sheng, Yiping</creator><creatorcontrib>Liu, Yanfei ; Cheng, Junsheng ; Yang, Yu ; Zheng, Jinde ; Pan, Haiyang ; Yang, Xingkai ; Bin, Guangfu ; Sheng, Yiping</creatorcontrib><description>A heated and challenging area of fault diagnostic research has been separating the rolling bearing problem feature information from severe noise disruption. The Symplectic Geometry Mode Decomposition (SGMD) has been effectively applied to rolling bearings with the advantage that it does not involve the subjective definition of parameters and eliminates noise when efficiently reconstructing the modes. Yet, it possesses the following shortcomings the invalid symplectic geometry component (SGC) affects the decomposition accuracy, and the physical meaning of the decomposition results is unclear. Inspired by nonparametric adaptive signal decomposition methods such as SGMD and Matching Pursuit (MP), the paper proposes the Symplectic Sparsest Mode Decomposition (SSMD) method. SSMD first constructs a library of symplectic geometry atoms and constrains the number of atoms by energy threshold, which effectively improves the decomposition speed; then, the quality of atoms and the robustness of the algorithm are improved by initialized adaptive noise reduction of symplectic geometry atoms; finally, symplectic geometry atoms are optimally reconstructed by genetic algorithms with the regularized locally narrowband operator as the optimization target, which obtains the sparsest solution of symplectic geometry mode components while constraining the decomposition result to be locally narrowband signals, so as to make better physical meaning of decomposition results. The comparative analysis results of simulation and experiment show that SSMD has obvious advantages in decomposition accuracy and noise robustness, and is more efficient relative to the decomposition of SGMD.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3370959</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atomic properties ; Decomposition ; Fault diagnosis ; Feature extraction ; Genetic algorithms ; Geometry ; Locally narrowband operator ; Matched pursuit ; Matching pursuit algorithms ; Matrix decomposition ; Narrowband ; Noise reduction ; Robustness ; Roller bearings ; Rolling bearings ; Sensors ; Symplectic sparsest mode decomposition</subject><ispartof>IEEE sensors journal, 2024-04, Vol.24 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-61791741db4da020b35a73b4fa01154603e9329143fe1d324d014ddfa69484f23</citedby><cites>FETCH-LOGICAL-c294t-61791741db4da020b35a73b4fa01154603e9329143fe1d324d014ddfa69484f23</cites><orcidid>0009-0009-1587-6324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10460386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10460386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yanfei</creatorcontrib><creatorcontrib>Cheng, Junsheng</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Zheng, Jinde</creatorcontrib><creatorcontrib>Pan, Haiyang</creatorcontrib><creatorcontrib>Yang, Xingkai</creatorcontrib><creatorcontrib>Bin, Guangfu</creatorcontrib><creatorcontrib>Sheng, Yiping</creatorcontrib><title>Symplectic Sparsest Mode Decomposition and its Application in Rolling Bearing Fault Diagnosis</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>A heated and challenging area of fault diagnostic research has been separating the rolling bearing problem feature information from severe noise disruption. The Symplectic Geometry Mode Decomposition (SGMD) has been effectively applied to rolling bearings with the advantage that it does not involve the subjective definition of parameters and eliminates noise when efficiently reconstructing the modes. Yet, it possesses the following shortcomings the invalid symplectic geometry component (SGC) affects the decomposition accuracy, and the physical meaning of the decomposition results is unclear. Inspired by nonparametric adaptive signal decomposition methods such as SGMD and Matching Pursuit (MP), the paper proposes the Symplectic Sparsest Mode Decomposition (SSMD) method. SSMD first constructs a library of symplectic geometry atoms and constrains the number of atoms by energy threshold, which effectively improves the decomposition speed; then, the quality of atoms and the robustness of the algorithm are improved by initialized adaptive noise reduction of symplectic geometry atoms; finally, symplectic geometry atoms are optimally reconstructed by genetic algorithms with the regularized locally narrowband operator as the optimization target, which obtains the sparsest solution of symplectic geometry mode components while constraining the decomposition result to be locally narrowband signals, so as to make better physical meaning of decomposition results. The comparative analysis results of simulation and experiment show that SSMD has obvious advantages in decomposition accuracy and noise robustness, and is more efficient relative to the decomposition of SGMD.</description><subject>Atomic properties</subject><subject>Decomposition</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Genetic algorithms</subject><subject>Geometry</subject><subject>Locally narrowband operator</subject><subject>Matched pursuit</subject><subject>Matching pursuit algorithms</subject><subject>Matrix decomposition</subject><subject>Narrowband</subject><subject>Noise reduction</subject><subject>Robustness</subject><subject>Roller bearings</subject><subject>Rolling bearings</subject><subject>Sensors</subject><subject>Symplectic sparsest mode decomposition</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgsLLFOmYmdh5elDx4qIFGQ2CDLjZ3KVRoHO13070loF6xmNLp35s4h5BphhAji7nk5ex3FEPMRYxmIRJyQASZJHmHG89O-ZxBxln2dk4sQNgAosiQbkO_lfttUpmhtQZeN8sGElr44bejUFG7buGBb62qqak1tG-i4aSpbqL-Zrem7qypbr-m9Ub6vc7WrWjq1al13znBJzkpVBXN1rEPyOZ99TB6jxdvD02S8iIpY8DZKMRNdTtQrrhXEsGKJytiKlwoQE54CM4LFAjkrDWoWcw3ItS5VKnjOy5gNye1hb-Pdz657QW7cztfdScmAAyQpYNqp8KAqvAvBm1I23m6V30sE2VOUPUXZU5RHip3n5uCxxph_-j5UnrJfvmVtlQ</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Liu, Yanfei</creator><creator>Cheng, Junsheng</creator><creator>Yang, Yu</creator><creator>Zheng, Jinde</creator><creator>Pan, Haiyang</creator><creator>Yang, Xingkai</creator><creator>Bin, Guangfu</creator><creator>Sheng, Yiping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-1587-6324</orcidid></search><sort><creationdate>20240415</creationdate><title>Symplectic Sparsest Mode Decomposition and its Application in Rolling Bearing Fault Diagnosis</title><author>Liu, Yanfei ; Cheng, Junsheng ; Yang, Yu ; Zheng, Jinde ; Pan, Haiyang ; Yang, Xingkai ; Bin, Guangfu ; Sheng, Yiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-61791741db4da020b35a73b4fa01154603e9329143fe1d324d014ddfa69484f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic properties</topic><topic>Decomposition</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Genetic algorithms</topic><topic>Geometry</topic><topic>Locally narrowband operator</topic><topic>Matched pursuit</topic><topic>Matching pursuit algorithms</topic><topic>Matrix decomposition</topic><topic>Narrowband</topic><topic>Noise reduction</topic><topic>Robustness</topic><topic>Roller bearings</topic><topic>Rolling bearings</topic><topic>Sensors</topic><topic>Symplectic sparsest mode decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanfei</creatorcontrib><creatorcontrib>Cheng, Junsheng</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Zheng, Jinde</creatorcontrib><creatorcontrib>Pan, Haiyang</creatorcontrib><creatorcontrib>Yang, Xingkai</creatorcontrib><creatorcontrib>Bin, Guangfu</creatorcontrib><creatorcontrib>Sheng, Yiping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yanfei</au><au>Cheng, Junsheng</au><au>Yang, Yu</au><au>Zheng, Jinde</au><au>Pan, Haiyang</au><au>Yang, Xingkai</au><au>Bin, Guangfu</au><au>Sheng, Yiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symplectic Sparsest Mode Decomposition and its Application in Rolling Bearing Fault Diagnosis</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-04-15</date><risdate>2024</risdate><volume>24</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>A heated and challenging area of fault diagnostic research has been separating the rolling bearing problem feature information from severe noise disruption. The Symplectic Geometry Mode Decomposition (SGMD) has been effectively applied to rolling bearings with the advantage that it does not involve the subjective definition of parameters and eliminates noise when efficiently reconstructing the modes. Yet, it possesses the following shortcomings the invalid symplectic geometry component (SGC) affects the decomposition accuracy, and the physical meaning of the decomposition results is unclear. Inspired by nonparametric adaptive signal decomposition methods such as SGMD and Matching Pursuit (MP), the paper proposes the Symplectic Sparsest Mode Decomposition (SSMD) method. SSMD first constructs a library of symplectic geometry atoms and constrains the number of atoms by energy threshold, which effectively improves the decomposition speed; then, the quality of atoms and the robustness of the algorithm are improved by initialized adaptive noise reduction of symplectic geometry atoms; finally, symplectic geometry atoms are optimally reconstructed by genetic algorithms with the regularized locally narrowband operator as the optimization target, which obtains the sparsest solution of symplectic geometry mode components while constraining the decomposition result to be locally narrowband signals, so as to make better physical meaning of decomposition results. The comparative analysis results of simulation and experiment show that SSMD has obvious advantages in decomposition accuracy and noise robustness, and is more efficient relative to the decomposition of SGMD.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3370959</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0009-1587-6324</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-04, Vol.24 (8), p.1-1 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_3040056016 |
source | IEEE/IET Electronic Library |
subjects | Atomic properties Decomposition Fault diagnosis Feature extraction Genetic algorithms Geometry Locally narrowband operator Matched pursuit Matching pursuit algorithms Matrix decomposition Narrowband Noise reduction Robustness Roller bearings Rolling bearings Sensors Symplectic sparsest mode decomposition |
title | Symplectic Sparsest Mode Decomposition and its Application in Rolling Bearing Fault Diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symplectic%20Sparsest%20Mode%20Decomposition%20and%20its%20Application%20in%20Rolling%20Bearing%20Fault%20Diagnosis&rft.jtitle=IEEE%20sensors%20journal&rft.au=Liu,%20Yanfei&rft.date=2024-04-15&rft.volume=24&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3370959&rft_dat=%3Cproquest_RIE%3E3040056016%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040056016&rft_id=info:pmid/&rft_ieee_id=10460386&rfr_iscdi=true |