Reducing Radiation Effects on Fiber Optic Quench Detection Sensors With Optical Annealing

Optical fiber sensors have many advantages for instrumentation in superconducting magnets, including a small footprint, immunity to electromagnetic interference, fully dielectric construction, and fast response times. However, using these sensors in magnets for fusion devices presents unique challen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2024-08, Vol.34 (5), p.1-4
Hauptverfasser: Duke, Owen, Greenberg, Aliya, Desroches, Joseph, Schuyt, Joe, Moseley, Dominic, Salazar, Erica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 34
creator Duke, Owen
Greenberg, Aliya
Desroches, Joseph
Schuyt, Joe
Moseley, Dominic
Salazar, Erica
description Optical fiber sensors have many advantages for instrumentation in superconducting magnets, including a small footprint, immunity to electromagnetic interference, fully dielectric construction, and fast response times. However, using these sensors in magnets for fusion devices presents unique challenges from the combination of low operating temperatures and high radiation doses. In particular, Radiation Induced Attenuation (RIA) can cause severe signal degradation. One way to reduce RIA is optical annealing, in which high-intensity light propagating along the fiber is used to temporarily remove the defects responsible for RIA. Here we present measurements of RIA in fluorine-doped single mode fibers subjected to up to 1.2 MGy of gamma irradiation while maintained at 77 K. Optical annealing with 200 mW of 970 nm light increased the survivable dose by a factor of 2000 relative to a minimally annealed fiber, but the effect was significantly reduced when the sample length was extended from 45 to 205 m.
doi_str_mv 10.1109/TASC.2023.3347369
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3040055661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10388227</ieee_id><sourcerecordid>3040055661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-23538b5d35e239956e63564fa06f49d380681e30cb57a44ce67b367038ca23a3</originalsourceid><addsrcrecordid>eNpNkEFLwzAUx4MoOKcfQPAQ8NyZ5CVpehxzU2Ew3AbiKaTpq-uY7Uzag9_eju7g6f3h_f7vwY-Qe84mnLPsaTvdzCaCCZgAyBR0dkFGXCmTCMXVZZ-Z4okRAq7JTYx7xrg0Uo3I5xqLzlf1F127onJt1dR0Xpbo20j7uKhyDHR1bCtP3zus_Y4-Y9tvT9wG69iESD-qdjcw7kCndY3u0B-8JVelO0S8O88x2S7m29lrsly9vM2my8QLqdtEgAKTqwIUCsgypVGD0rJ0TJcyK8AwbTgC87lKnZQedZqDThkY7wQ4GJPH4ewxND8dxtbumy7U_UcLTDKmlNa8p_hA-dDEGLC0x1B9u_BrObMngfYk0J4E2rPAvvMwdCpE_MeD6T2m8Ac-ZGr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040055661</pqid></control><display><type>article</type><title>Reducing Radiation Effects on Fiber Optic Quench Detection Sensors With Optical Annealing</title><source>IEEE Electronic Library Online</source><creator>Duke, Owen ; Greenberg, Aliya ; Desroches, Joseph ; Schuyt, Joe ; Moseley, Dominic ; Salazar, Erica</creator><creatorcontrib>Duke, Owen ; Greenberg, Aliya ; Desroches, Joseph ; Schuyt, Joe ; Moseley, Dominic ; Salazar, Erica</creatorcontrib><description>Optical fiber sensors have many advantages for instrumentation in superconducting magnets, including a small footprint, immunity to electromagnetic interference, fully dielectric construction, and fast response times. However, using these sensors in magnets for fusion devices presents unique challenges from the combination of low operating temperatures and high radiation doses. In particular, Radiation Induced Attenuation (RIA) can cause severe signal degradation. One way to reduce RIA is optical annealing, in which high-intensity light propagating along the fiber is used to temporarily remove the defects responsible for RIA. Here we present measurements of RIA in fluorine-doped single mode fibers subjected to up to 1.2 MGy of gamma irradiation while maintained at 77 K. Optical annealing with 200 mW of 970 nm light increased the survivable dose by a factor of 2000 relative to a minimally annealed fiber, but the effect was significantly reduced when the sample length was extended from 45 to 205 m.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3347369</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Annealing ; Electromagnetic interference ; Fiber optics ; Fluorine ; Gamma irradiation ; Luminous intensity ; Operating temperature ; optical fiber ; Optical fiber cables ; Optical fiber sensors ; Optical fiber testing ; Optical fibers ; Optical variables measurement ; quench detection ; Radiation ; Radiation dosage ; Radiation effects ; radiation induced attenuation ; RIA ; Sensors ; Superconducting magnets</subject><ispartof>IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-23538b5d35e239956e63564fa06f49d380681e30cb57a44ce67b367038ca23a3</cites><orcidid>0000-0003-3011-9013 ; 0000-0002-4890-598X ; 0009-0004-9206-2619 ; 0009-0002-2275-9811 ; 0000-0001-7673-0024 ; 0009-0003-5127-2874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10388227$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10388227$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duke, Owen</creatorcontrib><creatorcontrib>Greenberg, Aliya</creatorcontrib><creatorcontrib>Desroches, Joseph</creatorcontrib><creatorcontrib>Schuyt, Joe</creatorcontrib><creatorcontrib>Moseley, Dominic</creatorcontrib><creatorcontrib>Salazar, Erica</creatorcontrib><title>Reducing Radiation Effects on Fiber Optic Quench Detection Sensors With Optical Annealing</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Optical fiber sensors have many advantages for instrumentation in superconducting magnets, including a small footprint, immunity to electromagnetic interference, fully dielectric construction, and fast response times. However, using these sensors in magnets for fusion devices presents unique challenges from the combination of low operating temperatures and high radiation doses. In particular, Radiation Induced Attenuation (RIA) can cause severe signal degradation. One way to reduce RIA is optical annealing, in which high-intensity light propagating along the fiber is used to temporarily remove the defects responsible for RIA. Here we present measurements of RIA in fluorine-doped single mode fibers subjected to up to 1.2 MGy of gamma irradiation while maintained at 77 K. Optical annealing with 200 mW of 970 nm light increased the survivable dose by a factor of 2000 relative to a minimally annealed fiber, but the effect was significantly reduced when the sample length was extended from 45 to 205 m.</description><subject>Annealing</subject><subject>Electromagnetic interference</subject><subject>Fiber optics</subject><subject>Fluorine</subject><subject>Gamma irradiation</subject><subject>Luminous intensity</subject><subject>Operating temperature</subject><subject>optical fiber</subject><subject>Optical fiber cables</subject><subject>Optical fiber sensors</subject><subject>Optical fiber testing</subject><subject>Optical fibers</subject><subject>Optical variables measurement</subject><subject>quench detection</subject><subject>Radiation</subject><subject>Radiation dosage</subject><subject>Radiation effects</subject><subject>radiation induced attenuation</subject><subject>RIA</subject><subject>Sensors</subject><subject>Superconducting magnets</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAUx4MoOKcfQPAQ8NyZ5CVpehxzU2Ew3AbiKaTpq-uY7Uzag9_eju7g6f3h_f7vwY-Qe84mnLPsaTvdzCaCCZgAyBR0dkFGXCmTCMXVZZ-Z4okRAq7JTYx7xrg0Uo3I5xqLzlf1F127onJt1dR0Xpbo20j7uKhyDHR1bCtP3zus_Y4-Y9tvT9wG69iESD-qdjcw7kCndY3u0B-8JVelO0S8O88x2S7m29lrsly9vM2my8QLqdtEgAKTqwIUCsgypVGD0rJ0TJcyK8AwbTgC87lKnZQedZqDThkY7wQ4GJPH4ewxND8dxtbumy7U_UcLTDKmlNa8p_hA-dDEGLC0x1B9u_BrObMngfYk0J4E2rPAvvMwdCpE_MeD6T2m8Ac-ZGr4</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Duke, Owen</creator><creator>Greenberg, Aliya</creator><creator>Desroches, Joseph</creator><creator>Schuyt, Joe</creator><creator>Moseley, Dominic</creator><creator>Salazar, Erica</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3011-9013</orcidid><orcidid>https://orcid.org/0000-0002-4890-598X</orcidid><orcidid>https://orcid.org/0009-0004-9206-2619</orcidid><orcidid>https://orcid.org/0009-0002-2275-9811</orcidid><orcidid>https://orcid.org/0000-0001-7673-0024</orcidid><orcidid>https://orcid.org/0009-0003-5127-2874</orcidid></search><sort><creationdate>20240801</creationdate><title>Reducing Radiation Effects on Fiber Optic Quench Detection Sensors With Optical Annealing</title><author>Duke, Owen ; Greenberg, Aliya ; Desroches, Joseph ; Schuyt, Joe ; Moseley, Dominic ; Salazar, Erica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-23538b5d35e239956e63564fa06f49d380681e30cb57a44ce67b367038ca23a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annealing</topic><topic>Electromagnetic interference</topic><topic>Fiber optics</topic><topic>Fluorine</topic><topic>Gamma irradiation</topic><topic>Luminous intensity</topic><topic>Operating temperature</topic><topic>optical fiber</topic><topic>Optical fiber cables</topic><topic>Optical fiber sensors</topic><topic>Optical fiber testing</topic><topic>Optical fibers</topic><topic>Optical variables measurement</topic><topic>quench detection</topic><topic>Radiation</topic><topic>Radiation dosage</topic><topic>Radiation effects</topic><topic>radiation induced attenuation</topic><topic>RIA</topic><topic>Sensors</topic><topic>Superconducting magnets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duke, Owen</creatorcontrib><creatorcontrib>Greenberg, Aliya</creatorcontrib><creatorcontrib>Desroches, Joseph</creatorcontrib><creatorcontrib>Schuyt, Joe</creatorcontrib><creatorcontrib>Moseley, Dominic</creatorcontrib><creatorcontrib>Salazar, Erica</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duke, Owen</au><au>Greenberg, Aliya</au><au>Desroches, Joseph</au><au>Schuyt, Joe</au><au>Moseley, Dominic</au><au>Salazar, Erica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing Radiation Effects on Fiber Optic Quench Detection Sensors With Optical Annealing</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Optical fiber sensors have many advantages for instrumentation in superconducting magnets, including a small footprint, immunity to electromagnetic interference, fully dielectric construction, and fast response times. However, using these sensors in magnets for fusion devices presents unique challenges from the combination of low operating temperatures and high radiation doses. In particular, Radiation Induced Attenuation (RIA) can cause severe signal degradation. One way to reduce RIA is optical annealing, in which high-intensity light propagating along the fiber is used to temporarily remove the defects responsible for RIA. Here we present measurements of RIA in fluorine-doped single mode fibers subjected to up to 1.2 MGy of gamma irradiation while maintained at 77 K. Optical annealing with 200 mW of 970 nm light increased the survivable dose by a factor of 2000 relative to a minimally annealed fiber, but the effect was significantly reduced when the sample length was extended from 45 to 205 m.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2023.3347369</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3011-9013</orcidid><orcidid>https://orcid.org/0000-0002-4890-598X</orcidid><orcidid>https://orcid.org/0009-0004-9206-2619</orcidid><orcidid>https://orcid.org/0009-0002-2275-9811</orcidid><orcidid>https://orcid.org/0000-0001-7673-0024</orcidid><orcidid>https://orcid.org/0009-0003-5127-2874</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-4
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_3040055661
source IEEE Electronic Library Online
subjects Annealing
Electromagnetic interference
Fiber optics
Fluorine
Gamma irradiation
Luminous intensity
Operating temperature
optical fiber
Optical fiber cables
Optical fiber sensors
Optical fiber testing
Optical fibers
Optical variables measurement
quench detection
Radiation
Radiation dosage
Radiation effects
radiation induced attenuation
RIA
Sensors
Superconducting magnets
title Reducing Radiation Effects on Fiber Optic Quench Detection Sensors With Optical Annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20Radiation%20Effects%20on%20Fiber%20Optic%20Quench%20Detection%20Sensors%20With%20Optical%20Annealing&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Duke,%20Owen&rft.date=2024-08-01&rft.volume=34&rft.issue=5&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2023.3347369&rft_dat=%3Cproquest_RIE%3E3040055661%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040055661&rft_id=info:pmid/&rft_ieee_id=10388227&rfr_iscdi=true