Reducing Radiation Effects on Fiber Optic Quench Detection Sensors With Optical Annealing
Optical fiber sensors have many advantages for instrumentation in superconducting magnets, including a small footprint, immunity to electromagnetic interference, fully dielectric construction, and fast response times. However, using these sensors in magnets for fusion devices presents unique challen...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2024-08, Vol.34 (5), p.1-4 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 34 |
creator | Duke, Owen Greenberg, Aliya Desroches, Joseph Schuyt, Joe Moseley, Dominic Salazar, Erica |
description | Optical fiber sensors have many advantages for instrumentation in superconducting magnets, including a small footprint, immunity to electromagnetic interference, fully dielectric construction, and fast response times. However, using these sensors in magnets for fusion devices presents unique challenges from the combination of low operating temperatures and high radiation doses. In particular, Radiation Induced Attenuation (RIA) can cause severe signal degradation. One way to reduce RIA is optical annealing, in which high-intensity light propagating along the fiber is used to temporarily remove the defects responsible for RIA. Here we present measurements of RIA in fluorine-doped single mode fibers subjected to up to 1.2 MGy of gamma irradiation while maintained at 77 K. Optical annealing with 200 mW of 970 nm light increased the survivable dose by a factor of 2000 relative to a minimally annealed fiber, but the effect was significantly reduced when the sample length was extended from 45 to 205 m. |
doi_str_mv | 10.1109/TASC.2023.3347369 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3040055661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10388227</ieee_id><sourcerecordid>3040055661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-23538b5d35e239956e63564fa06f49d380681e30cb57a44ce67b367038ca23a3</originalsourceid><addsrcrecordid>eNpNkEFLwzAUx4MoOKcfQPAQ8NyZ5CVpehxzU2Ew3AbiKaTpq-uY7Uzag9_eju7g6f3h_f7vwY-Qe84mnLPsaTvdzCaCCZgAyBR0dkFGXCmTCMXVZZ-Z4okRAq7JTYx7xrg0Uo3I5xqLzlf1F127onJt1dR0Xpbo20j7uKhyDHR1bCtP3zus_Y4-Y9tvT9wG69iESD-qdjcw7kCndY3u0B-8JVelO0S8O88x2S7m29lrsly9vM2my8QLqdtEgAKTqwIUCsgypVGD0rJ0TJcyK8AwbTgC87lKnZQedZqDThkY7wQ4GJPH4ewxND8dxtbumy7U_UcLTDKmlNa8p_hA-dDEGLC0x1B9u_BrObMngfYk0J4E2rPAvvMwdCpE_MeD6T2m8Ac-ZGr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040055661</pqid></control><display><type>article</type><title>Reducing Radiation Effects on Fiber Optic Quench Detection Sensors With Optical Annealing</title><source>IEEE Electronic Library Online</source><creator>Duke, Owen ; Greenberg, Aliya ; Desroches, Joseph ; Schuyt, Joe ; Moseley, Dominic ; Salazar, Erica</creator><creatorcontrib>Duke, Owen ; Greenberg, Aliya ; Desroches, Joseph ; Schuyt, Joe ; Moseley, Dominic ; Salazar, Erica</creatorcontrib><description>Optical fiber sensors have many advantages for instrumentation in superconducting magnets, including a small footprint, immunity to electromagnetic interference, fully dielectric construction, and fast response times. However, using these sensors in magnets for fusion devices presents unique challenges from the combination of low operating temperatures and high radiation doses. In particular, Radiation Induced Attenuation (RIA) can cause severe signal degradation. One way to reduce RIA is optical annealing, in which high-intensity light propagating along the fiber is used to temporarily remove the defects responsible for RIA. Here we present measurements of RIA in fluorine-doped single mode fibers subjected to up to 1.2 MGy of gamma irradiation while maintained at 77 K. Optical annealing with 200 mW of 970 nm light increased the survivable dose by a factor of 2000 relative to a minimally annealed fiber, but the effect was significantly reduced when the sample length was extended from 45 to 205 m.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3347369</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Annealing ; Electromagnetic interference ; Fiber optics ; Fluorine ; Gamma irradiation ; Luminous intensity ; Operating temperature ; optical fiber ; Optical fiber cables ; Optical fiber sensors ; Optical fiber testing ; Optical fibers ; Optical variables measurement ; quench detection ; Radiation ; Radiation dosage ; Radiation effects ; radiation induced attenuation ; RIA ; Sensors ; Superconducting magnets</subject><ispartof>IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-23538b5d35e239956e63564fa06f49d380681e30cb57a44ce67b367038ca23a3</cites><orcidid>0000-0003-3011-9013 ; 0000-0002-4890-598X ; 0009-0004-9206-2619 ; 0009-0002-2275-9811 ; 0000-0001-7673-0024 ; 0009-0003-5127-2874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10388227$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10388227$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duke, Owen</creatorcontrib><creatorcontrib>Greenberg, Aliya</creatorcontrib><creatorcontrib>Desroches, Joseph</creatorcontrib><creatorcontrib>Schuyt, Joe</creatorcontrib><creatorcontrib>Moseley, Dominic</creatorcontrib><creatorcontrib>Salazar, Erica</creatorcontrib><title>Reducing Radiation Effects on Fiber Optic Quench Detection Sensors With Optical Annealing</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Optical fiber sensors have many advantages for instrumentation in superconducting magnets, including a small footprint, immunity to electromagnetic interference, fully dielectric construction, and fast response times. However, using these sensors in magnets for fusion devices presents unique challenges from the combination of low operating temperatures and high radiation doses. In particular, Radiation Induced Attenuation (RIA) can cause severe signal degradation. One way to reduce RIA is optical annealing, in which high-intensity light propagating along the fiber is used to temporarily remove the defects responsible for RIA. Here we present measurements of RIA in fluorine-doped single mode fibers subjected to up to 1.2 MGy of gamma irradiation while maintained at 77 K. Optical annealing with 200 mW of 970 nm light increased the survivable dose by a factor of 2000 relative to a minimally annealed fiber, but the effect was significantly reduced when the sample length was extended from 45 to 205 m.</description><subject>Annealing</subject><subject>Electromagnetic interference</subject><subject>Fiber optics</subject><subject>Fluorine</subject><subject>Gamma irradiation</subject><subject>Luminous intensity</subject><subject>Operating temperature</subject><subject>optical fiber</subject><subject>Optical fiber cables</subject><subject>Optical fiber sensors</subject><subject>Optical fiber testing</subject><subject>Optical fibers</subject><subject>Optical variables measurement</subject><subject>quench detection</subject><subject>Radiation</subject><subject>Radiation dosage</subject><subject>Radiation effects</subject><subject>radiation induced attenuation</subject><subject>RIA</subject><subject>Sensors</subject><subject>Superconducting magnets</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAUx4MoOKcfQPAQ8NyZ5CVpehxzU2Ew3AbiKaTpq-uY7Uzag9_eju7g6f3h_f7vwY-Qe84mnLPsaTvdzCaCCZgAyBR0dkFGXCmTCMXVZZ-Z4okRAq7JTYx7xrg0Uo3I5xqLzlf1F127onJt1dR0Xpbo20j7uKhyDHR1bCtP3zus_Y4-Y9tvT9wG69iESD-qdjcw7kCndY3u0B-8JVelO0S8O88x2S7m29lrsly9vM2my8QLqdtEgAKTqwIUCsgypVGD0rJ0TJcyK8AwbTgC87lKnZQedZqDThkY7wQ4GJPH4ewxND8dxtbumy7U_UcLTDKmlNa8p_hA-dDEGLC0x1B9u_BrObMngfYk0J4E2rPAvvMwdCpE_MeD6T2m8Ac-ZGr4</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Duke, Owen</creator><creator>Greenberg, Aliya</creator><creator>Desroches, Joseph</creator><creator>Schuyt, Joe</creator><creator>Moseley, Dominic</creator><creator>Salazar, Erica</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3011-9013</orcidid><orcidid>https://orcid.org/0000-0002-4890-598X</orcidid><orcidid>https://orcid.org/0009-0004-9206-2619</orcidid><orcidid>https://orcid.org/0009-0002-2275-9811</orcidid><orcidid>https://orcid.org/0000-0001-7673-0024</orcidid><orcidid>https://orcid.org/0009-0003-5127-2874</orcidid></search><sort><creationdate>20240801</creationdate><title>Reducing Radiation Effects on Fiber Optic Quench Detection Sensors With Optical Annealing</title><author>Duke, Owen ; Greenberg, Aliya ; Desroches, Joseph ; Schuyt, Joe ; Moseley, Dominic ; Salazar, Erica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-23538b5d35e239956e63564fa06f49d380681e30cb57a44ce67b367038ca23a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annealing</topic><topic>Electromagnetic interference</topic><topic>Fiber optics</topic><topic>Fluorine</topic><topic>Gamma irradiation</topic><topic>Luminous intensity</topic><topic>Operating temperature</topic><topic>optical fiber</topic><topic>Optical fiber cables</topic><topic>Optical fiber sensors</topic><topic>Optical fiber testing</topic><topic>Optical fibers</topic><topic>Optical variables measurement</topic><topic>quench detection</topic><topic>Radiation</topic><topic>Radiation dosage</topic><topic>Radiation effects</topic><topic>radiation induced attenuation</topic><topic>RIA</topic><topic>Sensors</topic><topic>Superconducting magnets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duke, Owen</creatorcontrib><creatorcontrib>Greenberg, Aliya</creatorcontrib><creatorcontrib>Desroches, Joseph</creatorcontrib><creatorcontrib>Schuyt, Joe</creatorcontrib><creatorcontrib>Moseley, Dominic</creatorcontrib><creatorcontrib>Salazar, Erica</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duke, Owen</au><au>Greenberg, Aliya</au><au>Desroches, Joseph</au><au>Schuyt, Joe</au><au>Moseley, Dominic</au><au>Salazar, Erica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing Radiation Effects on Fiber Optic Quench Detection Sensors With Optical Annealing</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Optical fiber sensors have many advantages for instrumentation in superconducting magnets, including a small footprint, immunity to electromagnetic interference, fully dielectric construction, and fast response times. However, using these sensors in magnets for fusion devices presents unique challenges from the combination of low operating temperatures and high radiation doses. In particular, Radiation Induced Attenuation (RIA) can cause severe signal degradation. One way to reduce RIA is optical annealing, in which high-intensity light propagating along the fiber is used to temporarily remove the defects responsible for RIA. Here we present measurements of RIA in fluorine-doped single mode fibers subjected to up to 1.2 MGy of gamma irradiation while maintained at 77 K. Optical annealing with 200 mW of 970 nm light increased the survivable dose by a factor of 2000 relative to a minimally annealed fiber, but the effect was significantly reduced when the sample length was extended from 45 to 205 m.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2023.3347369</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3011-9013</orcidid><orcidid>https://orcid.org/0000-0002-4890-598X</orcidid><orcidid>https://orcid.org/0009-0004-9206-2619</orcidid><orcidid>https://orcid.org/0009-0002-2275-9811</orcidid><orcidid>https://orcid.org/0000-0001-7673-0024</orcidid><orcidid>https://orcid.org/0009-0003-5127-2874</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-4 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_journals_3040055661 |
source | IEEE Electronic Library Online |
subjects | Annealing Electromagnetic interference Fiber optics Fluorine Gamma irradiation Luminous intensity Operating temperature optical fiber Optical fiber cables Optical fiber sensors Optical fiber testing Optical fibers Optical variables measurement quench detection Radiation Radiation dosage Radiation effects radiation induced attenuation RIA Sensors Superconducting magnets |
title | Reducing Radiation Effects on Fiber Optic Quench Detection Sensors With Optical Annealing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20Radiation%20Effects%20on%20Fiber%20Optic%20Quench%20Detection%20Sensors%20With%20Optical%20Annealing&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Duke,%20Owen&rft.date=2024-08-01&rft.volume=34&rft.issue=5&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2023.3347369&rft_dat=%3Cproquest_RIE%3E3040055661%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040055661&rft_id=info:pmid/&rft_ieee_id=10388227&rfr_iscdi=true |