Risk-Based Maintenance Strategies on Fishing Vessel Refrigeration Systems Using Fuzzy-FMEA

Applying the fuzzy logic method to FMEA and its correlation with performance investigations is rarely applied in analyzing refrigeration system risk. The aim of this study is investigate the refrigeration system performance and analyze the risk of failure mode in the performance of the refrigeration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of failure analysis and prevention 2024-04, Vol.24 (2), p.855-876
Hauptverfasser: Siahaan, Juniawan Preston, Yaqin, Rizqi Ilmal, Priharanto, Yuniar Endri, Abrori, M. Zaki Latif, Siswantoro, Nurhadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 876
container_issue 2
container_start_page 855
container_title Journal of failure analysis and prevention
container_volume 24
creator Siahaan, Juniawan Preston
Yaqin, Rizqi Ilmal
Priharanto, Yuniar Endri
Abrori, M. Zaki Latif
Siswantoro, Nurhadi
description Applying the fuzzy logic method to FMEA and its correlation with performance investigations is rarely applied in analyzing refrigeration system risk. The aim of this study is investigate the refrigeration system performance and analyze the risk of failure mode in the performance of the refrigeration system using the fuzzy-FMEA method. In calculating performance, the COP parameter is needed. Prioritization of failure modes uses conventional FMEA (C-FMEA) and fuzzy-based FMEA (Fuzzy-FMEA), which produces conventional RPN (C-RPN) and fuzzy-RPN (F-RPN). Pareto diagrams are used to classify RPN categories which are the main causes. The result of the study is that the calculation of the refrigeration system performance shows a decreasing trend with increasing operating time. In the risk analysis, it was found that the F 21 (evaporator) failure has the same rating, and the highest is C-RPN (252) and F-RPN (750). Five categories need to be mitigated. The application of fuzzy-FMEA determines the critical failure priority of the evaporator. The results of this study provide new insights into developing engine performance investigations by determining critical failure modes to get mitigation quickly by minimizing expert opinion expertise.
doi_str_mv 10.1007/s11668-024-01878-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039886410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039886410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1f3f7a577f99bdc378904b4b0581f7cd30a4b81ed42523ad9f82be65f863bc083</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52i-dpM91mJVaBFa68FLyO4mNbXdrZkttP31pq7gzdMMzPPOMA9C15TcUkLkHVCaZQoTJjChSiq8O0E9KpnCaSbFaexTIbEkLD9HFwBLQnhKBeuh96mHT3xvwFbJxPi6tbWpS5vM2mBau_AWkqZORh4-fL1I3iyAXSVT64Jf2Ej4OJztobVrSOZwREbbw2GPR5OHwSU6c2YF9uq39tF89PA6fMLjl8fn4WCMSyZJi6njTppUSpfnRVVyqXIiClGQVFEny4oTIwpFbSVYyripcqdYYbPUqYwXJVG8j266vZvQfG0ttHrZbEMdT2pOeK5UJiiJFOuoMjQAwTq9CX5twl5Too8OdedQR4f6x6HexRDvQhDhOn78t_qf1DditHUR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039886410</pqid></control><display><type>article</type><title>Risk-Based Maintenance Strategies on Fishing Vessel Refrigeration Systems Using Fuzzy-FMEA</title><source>SpringerNature Journals</source><creator>Siahaan, Juniawan Preston ; Yaqin, Rizqi Ilmal ; Priharanto, Yuniar Endri ; Abrori, M. Zaki Latif ; Siswantoro, Nurhadi</creator><creatorcontrib>Siahaan, Juniawan Preston ; Yaqin, Rizqi Ilmal ; Priharanto, Yuniar Endri ; Abrori, M. Zaki Latif ; Siswantoro, Nurhadi</creatorcontrib><description>Applying the fuzzy logic method to FMEA and its correlation with performance investigations is rarely applied in analyzing refrigeration system risk. The aim of this study is investigate the refrigeration system performance and analyze the risk of failure mode in the performance of the refrigeration system using the fuzzy-FMEA method. In calculating performance, the COP parameter is needed. Prioritization of failure modes uses conventional FMEA (C-FMEA) and fuzzy-based FMEA (Fuzzy-FMEA), which produces conventional RPN (C-RPN) and fuzzy-RPN (F-RPN). Pareto diagrams are used to classify RPN categories which are the main causes. The result of the study is that the calculation of the refrigeration system performance shows a decreasing trend with increasing operating time. In the risk analysis, it was found that the F 21 (evaporator) failure has the same rating, and the highest is C-RPN (252) and F-RPN (750). Five categories need to be mitigated. The application of fuzzy-FMEA determines the critical failure priority of the evaporator. The results of this study provide new insights into developing engine performance investigations by determining critical failure modes to get mitigation quickly by minimizing expert opinion expertise.</description><identifier>ISSN: 1547-7029</identifier><identifier>EISSN: 1728-5674</identifier><identifier>EISSN: 1864-1245</identifier><identifier>DOI: 10.1007/s11668-024-01878-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Corrosion and Coatings ; Evaporators ; Failure modes ; Fuzzy logic ; Fuzzy systems ; Materials Science ; Mathematical analysis ; Original Research Article ; Quality Control ; Refrigeration ; Reliability ; Risk analysis ; Safety and Risk ; Solid Mechanics ; Tribology</subject><ispartof>Journal of failure analysis and prevention, 2024-04, Vol.24 (2), p.855-876</ispartof><rights>ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1f3f7a577f99bdc378904b4b0581f7cd30a4b81ed42523ad9f82be65f863bc083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Siahaan, Juniawan Preston</creatorcontrib><creatorcontrib>Yaqin, Rizqi Ilmal</creatorcontrib><creatorcontrib>Priharanto, Yuniar Endri</creatorcontrib><creatorcontrib>Abrori, M. Zaki Latif</creatorcontrib><creatorcontrib>Siswantoro, Nurhadi</creatorcontrib><title>Risk-Based Maintenance Strategies on Fishing Vessel Refrigeration Systems Using Fuzzy-FMEA</title><title>Journal of failure analysis and prevention</title><addtitle>J Fail. Anal. and Preven</addtitle><description>Applying the fuzzy logic method to FMEA and its correlation with performance investigations is rarely applied in analyzing refrigeration system risk. The aim of this study is investigate the refrigeration system performance and analyze the risk of failure mode in the performance of the refrigeration system using the fuzzy-FMEA method. In calculating performance, the COP parameter is needed. Prioritization of failure modes uses conventional FMEA (C-FMEA) and fuzzy-based FMEA (Fuzzy-FMEA), which produces conventional RPN (C-RPN) and fuzzy-RPN (F-RPN). Pareto diagrams are used to classify RPN categories which are the main causes. The result of the study is that the calculation of the refrigeration system performance shows a decreasing trend with increasing operating time. In the risk analysis, it was found that the F 21 (evaporator) failure has the same rating, and the highest is C-RPN (252) and F-RPN (750). Five categories need to be mitigated. The application of fuzzy-FMEA determines the critical failure priority of the evaporator. The results of this study provide new insights into developing engine performance investigations by determining critical failure modes to get mitigation quickly by minimizing expert opinion expertise.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Corrosion and Coatings</subject><subject>Evaporators</subject><subject>Failure modes</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Original Research Article</subject><subject>Quality Control</subject><subject>Refrigeration</subject><subject>Reliability</subject><subject>Risk analysis</subject><subject>Safety and Risk</subject><subject>Solid Mechanics</subject><subject>Tribology</subject><issn>1547-7029</issn><issn>1728-5674</issn><issn>1864-1245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52i-dpM91mJVaBFa68FLyO4mNbXdrZkttP31pq7gzdMMzPPOMA9C15TcUkLkHVCaZQoTJjChSiq8O0E9KpnCaSbFaexTIbEkLD9HFwBLQnhKBeuh96mHT3xvwFbJxPi6tbWpS5vM2mBau_AWkqZORh4-fL1I3iyAXSVT64Jf2Ej4OJztobVrSOZwREbbw2GPR5OHwSU6c2YF9uq39tF89PA6fMLjl8fn4WCMSyZJi6njTppUSpfnRVVyqXIiClGQVFEny4oTIwpFbSVYyripcqdYYbPUqYwXJVG8j266vZvQfG0ttHrZbEMdT2pOeK5UJiiJFOuoMjQAwTq9CX5twl5Too8OdedQR4f6x6HexRDvQhDhOn78t_qf1DditHUR</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Siahaan, Juniawan Preston</creator><creator>Yaqin, Rizqi Ilmal</creator><creator>Priharanto, Yuniar Endri</creator><creator>Abrori, M. Zaki Latif</creator><creator>Siswantoro, Nurhadi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20240401</creationdate><title>Risk-Based Maintenance Strategies on Fishing Vessel Refrigeration Systems Using Fuzzy-FMEA</title><author>Siahaan, Juniawan Preston ; Yaqin, Rizqi Ilmal ; Priharanto, Yuniar Endri ; Abrori, M. Zaki Latif ; Siswantoro, Nurhadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1f3f7a577f99bdc378904b4b0581f7cd30a4b81ed42523ad9f82be65f863bc083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Corrosion and Coatings</topic><topic>Evaporators</topic><topic>Failure modes</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Original Research Article</topic><topic>Quality Control</topic><topic>Refrigeration</topic><topic>Reliability</topic><topic>Risk analysis</topic><topic>Safety and Risk</topic><topic>Solid Mechanics</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siahaan, Juniawan Preston</creatorcontrib><creatorcontrib>Yaqin, Rizqi Ilmal</creatorcontrib><creatorcontrib>Priharanto, Yuniar Endri</creatorcontrib><creatorcontrib>Abrori, M. Zaki Latif</creatorcontrib><creatorcontrib>Siswantoro, Nurhadi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of failure analysis and prevention</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siahaan, Juniawan Preston</au><au>Yaqin, Rizqi Ilmal</au><au>Priharanto, Yuniar Endri</au><au>Abrori, M. Zaki Latif</au><au>Siswantoro, Nurhadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk-Based Maintenance Strategies on Fishing Vessel Refrigeration Systems Using Fuzzy-FMEA</atitle><jtitle>Journal of failure analysis and prevention</jtitle><stitle>J Fail. Anal. and Preven</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>24</volume><issue>2</issue><spage>855</spage><epage>876</epage><pages>855-876</pages><issn>1547-7029</issn><eissn>1728-5674</eissn><eissn>1864-1245</eissn><abstract>Applying the fuzzy logic method to FMEA and its correlation with performance investigations is rarely applied in analyzing refrigeration system risk. The aim of this study is investigate the refrigeration system performance and analyze the risk of failure mode in the performance of the refrigeration system using the fuzzy-FMEA method. In calculating performance, the COP parameter is needed. Prioritization of failure modes uses conventional FMEA (C-FMEA) and fuzzy-based FMEA (Fuzzy-FMEA), which produces conventional RPN (C-RPN) and fuzzy-RPN (F-RPN). Pareto diagrams are used to classify RPN categories which are the main causes. The result of the study is that the calculation of the refrigeration system performance shows a decreasing trend with increasing operating time. In the risk analysis, it was found that the F 21 (evaporator) failure has the same rating, and the highest is C-RPN (252) and F-RPN (750). Five categories need to be mitigated. The application of fuzzy-FMEA determines the critical failure priority of the evaporator. The results of this study provide new insights into developing engine performance investigations by determining critical failure modes to get mitigation quickly by minimizing expert opinion expertise.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11668-024-01878-x</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1547-7029
ispartof Journal of failure analysis and prevention, 2024-04, Vol.24 (2), p.855-876
issn 1547-7029
1728-5674
1864-1245
language eng
recordid cdi_proquest_journals_3039886410
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Corrosion and Coatings
Evaporators
Failure modes
Fuzzy logic
Fuzzy systems
Materials Science
Mathematical analysis
Original Research Article
Quality Control
Refrigeration
Reliability
Risk analysis
Safety and Risk
Solid Mechanics
Tribology
title Risk-Based Maintenance Strategies on Fishing Vessel Refrigeration Systems Using Fuzzy-FMEA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk-Based%20Maintenance%20Strategies%20on%20Fishing%20Vessel%20Refrigeration%20Systems%20Using%20Fuzzy-FMEA&rft.jtitle=Journal%20of%20failure%20analysis%20and%20prevention&rft.au=Siahaan,%20Juniawan%20Preston&rft.date=2024-04-01&rft.volume=24&rft.issue=2&rft.spage=855&rft.epage=876&rft.pages=855-876&rft.issn=1547-7029&rft.eissn=1728-5674&rft_id=info:doi/10.1007/s11668-024-01878-x&rft_dat=%3Cproquest_cross%3E3039886410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039886410&rft_id=info:pmid/&rfr_iscdi=true