Optimising Hyperparameters of Artificial Neural Network Topology for SHM Damage Detection and Identification
Artificial neural networks (ANNs) are a powerful method for solving classification problems, particularly for clustered data. However, one of the main challenges in using ANNs for general classification problems is determining the best topology (number of layers and neurons per layer) for a given pr...
Gespeichert in:
Veröffentlicht in: | Journal of failure analysis and prevention 2024-04, Vol.24 (2), p.955-975 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 975 |
---|---|
container_issue | 2 |
container_start_page | 955 |
container_title | Journal of failure analysis and prevention |
container_volume | 24 |
creator | Rosenstock Völtz, Luísa Janczkowski Fogaça, Matheus Lenz Cardoso, Eduardo De Medeiros, Ricardo |
description | Artificial neural networks (ANNs) are a powerful method for solving classification problems, particularly for clustered data. However, one of the main challenges in using ANNs for general classification problems is determining the best topology (number of layers and neurons per layer) for a given problem or dataset. This study proposes a novel approach to address this challenge by using a optimisation algorithm. The algorithm first solves an external optimisation problem to obtain the optimal topology that maximises the accuracy of supervised learning. After, an inner optimisation problem is used to train the network to detect damage, using the Frequency Response Function of vibration-based measurements as input. To test the proposed methodology, it is applied to three different mechanical systems: metallic beams, rolling bearings, and composite plates. Principal component analysis is used to reduce the number of inputs to the neural network, and the external optimisation problem is solved using Particle swarm optimisation. The results demonstrate that the proposed methodology can accurately assess damage. Through the results, a discussion is presented about the potentialities and limitations of the proposed methodology as a support tool for damage detection. |
doi_str_mv | 10.1007/s11668-024-01888-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039886314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039886314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-95be039313edf3617bf3b6c39c9716782b34810eb5256b55b07eb6f98bd2804f3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74ET-yrFqglYAuKGvLTuzIJYmDnQr170lbJHasZjS654x0AbjF6B4jJB4SxpzLDJE8Q1hKmRVnYIIFkRnjIj8fd5aLTCBSXIKrlLYIUYZzMgHNuh9865Pvarjc9zb2OurWDjYmGBycxcE7X3rdwDe7i8cxfIf4CTehD02o99CFCN-Xr3ChW11buBjZcvChg7qr4Kqy3dGgD6drcOF0k-zN75yCj6fHzXyZvayfV_PZS1YSgYasYMYiWlBMbeUox8I4anhJi7IQmAtJDM0lRtYwwrhhzCBhDXeFNBWRKHd0Cu5O3j6Gr51Ng9qGXezGl4qOYik5xfmYIqdUGUNK0TrVR9_quFcYqUOr6tSqGltVx1ZVMUL0BKUx3NU2_qn_oX4AQ_97Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039886314</pqid></control><display><type>article</type><title>Optimising Hyperparameters of Artificial Neural Network Topology for SHM Damage Detection and Identification</title><source>SpringerNature Journals</source><creator>Rosenstock Völtz, Luísa ; Janczkowski Fogaça, Matheus ; Lenz Cardoso, Eduardo ; De Medeiros, Ricardo</creator><creatorcontrib>Rosenstock Völtz, Luísa ; Janczkowski Fogaça, Matheus ; Lenz Cardoso, Eduardo ; De Medeiros, Ricardo</creatorcontrib><description>Artificial neural networks (ANNs) are a powerful method for solving classification problems, particularly for clustered data. However, one of the main challenges in using ANNs for general classification problems is determining the best topology (number of layers and neurons per layer) for a given problem or dataset. This study proposes a novel approach to address this challenge by using a optimisation algorithm. The algorithm first solves an external optimisation problem to obtain the optimal topology that maximises the accuracy of supervised learning. After, an inner optimisation problem is used to train the network to detect damage, using the Frequency Response Function of vibration-based measurements as input. To test the proposed methodology, it is applied to three different mechanical systems: metallic beams, rolling bearings, and composite plates. Principal component analysis is used to reduce the number of inputs to the neural network, and the external optimisation problem is solved using Particle swarm optimisation. The results demonstrate that the proposed methodology can accurately assess damage. Through the results, a discussion is presented about the potentialities and limitations of the proposed methodology as a support tool for damage detection.</description><identifier>ISSN: 1547-7029</identifier><identifier>EISSN: 1728-5674</identifier><identifier>EISSN: 1864-1245</identifier><identifier>DOI: 10.1007/s11668-024-01888-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial neural networks ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Classification ; Composite structures ; Corrosion and Coatings ; Damage assessment ; Damage detection ; Frequency response functions ; Machine learning ; Materials Science ; Mechanical systems ; Methodology ; Network topologies ; Neural networks ; Original Research Article ; Particle swarm optimization ; Principal components analysis ; Quality Control ; Reliability ; Roller bearings ; Safety and Risk ; Solid Mechanics ; Supervised learning ; Tribology</subject><ispartof>Journal of failure analysis and prevention, 2024-04, Vol.24 (2), p.955-975</ispartof><rights>ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-95be039313edf3617bf3b6c39c9716782b34810eb5256b55b07eb6f98bd2804f3</cites><orcidid>0000-0002-8055-3275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Rosenstock Völtz, Luísa</creatorcontrib><creatorcontrib>Janczkowski Fogaça, Matheus</creatorcontrib><creatorcontrib>Lenz Cardoso, Eduardo</creatorcontrib><creatorcontrib>De Medeiros, Ricardo</creatorcontrib><title>Optimising Hyperparameters of Artificial Neural Network Topology for SHM Damage Detection and Identification</title><title>Journal of failure analysis and prevention</title><addtitle>J Fail. Anal. and Preven</addtitle><description>Artificial neural networks (ANNs) are a powerful method for solving classification problems, particularly for clustered data. However, one of the main challenges in using ANNs for general classification problems is determining the best topology (number of layers and neurons per layer) for a given problem or dataset. This study proposes a novel approach to address this challenge by using a optimisation algorithm. The algorithm first solves an external optimisation problem to obtain the optimal topology that maximises the accuracy of supervised learning. After, an inner optimisation problem is used to train the network to detect damage, using the Frequency Response Function of vibration-based measurements as input. To test the proposed methodology, it is applied to three different mechanical systems: metallic beams, rolling bearings, and composite plates. Principal component analysis is used to reduce the number of inputs to the neural network, and the external optimisation problem is solved using Particle swarm optimisation. The results demonstrate that the proposed methodology can accurately assess damage. Through the results, a discussion is presented about the potentialities and limitations of the proposed methodology as a support tool for damage detection.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Classification</subject><subject>Composite structures</subject><subject>Corrosion and Coatings</subject><subject>Damage assessment</subject><subject>Damage detection</subject><subject>Frequency response functions</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Mechanical systems</subject><subject>Methodology</subject><subject>Network topologies</subject><subject>Neural networks</subject><subject>Original Research Article</subject><subject>Particle swarm optimization</subject><subject>Principal components analysis</subject><subject>Quality Control</subject><subject>Reliability</subject><subject>Roller bearings</subject><subject>Safety and Risk</subject><subject>Solid Mechanics</subject><subject>Supervised learning</subject><subject>Tribology</subject><issn>1547-7029</issn><issn>1728-5674</issn><issn>1864-1245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74ET-yrFqglYAuKGvLTuzIJYmDnQr170lbJHasZjS654x0AbjF6B4jJB4SxpzLDJE8Q1hKmRVnYIIFkRnjIj8fd5aLTCBSXIKrlLYIUYZzMgHNuh9865Pvarjc9zb2OurWDjYmGBycxcE7X3rdwDe7i8cxfIf4CTehD02o99CFCN-Xr3ChW11buBjZcvChg7qr4Kqy3dGgD6drcOF0k-zN75yCj6fHzXyZvayfV_PZS1YSgYasYMYiWlBMbeUox8I4anhJi7IQmAtJDM0lRtYwwrhhzCBhDXeFNBWRKHd0Cu5O3j6Gr51Ng9qGXezGl4qOYik5xfmYIqdUGUNK0TrVR9_quFcYqUOr6tSqGltVx1ZVMUL0BKUx3NU2_qn_oX4AQ_97Bw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Rosenstock Völtz, Luísa</creator><creator>Janczkowski Fogaça, Matheus</creator><creator>Lenz Cardoso, Eduardo</creator><creator>De Medeiros, Ricardo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-8055-3275</orcidid></search><sort><creationdate>20240401</creationdate><title>Optimising Hyperparameters of Artificial Neural Network Topology for SHM Damage Detection and Identification</title><author>Rosenstock Völtz, Luísa ; Janczkowski Fogaça, Matheus ; Lenz Cardoso, Eduardo ; De Medeiros, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-95be039313edf3617bf3b6c39c9716782b34810eb5256b55b07eb6f98bd2804f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Classification</topic><topic>Composite structures</topic><topic>Corrosion and Coatings</topic><topic>Damage assessment</topic><topic>Damage detection</topic><topic>Frequency response functions</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Mechanical systems</topic><topic>Methodology</topic><topic>Network topologies</topic><topic>Neural networks</topic><topic>Original Research Article</topic><topic>Particle swarm optimization</topic><topic>Principal components analysis</topic><topic>Quality Control</topic><topic>Reliability</topic><topic>Roller bearings</topic><topic>Safety and Risk</topic><topic>Solid Mechanics</topic><topic>Supervised learning</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenstock Völtz, Luísa</creatorcontrib><creatorcontrib>Janczkowski Fogaça, Matheus</creatorcontrib><creatorcontrib>Lenz Cardoso, Eduardo</creatorcontrib><creatorcontrib>De Medeiros, Ricardo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of failure analysis and prevention</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenstock Völtz, Luísa</au><au>Janczkowski Fogaça, Matheus</au><au>Lenz Cardoso, Eduardo</au><au>De Medeiros, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimising Hyperparameters of Artificial Neural Network Topology for SHM Damage Detection and Identification</atitle><jtitle>Journal of failure analysis and prevention</jtitle><stitle>J Fail. Anal. and Preven</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>24</volume><issue>2</issue><spage>955</spage><epage>975</epage><pages>955-975</pages><issn>1547-7029</issn><eissn>1728-5674</eissn><eissn>1864-1245</eissn><abstract>Artificial neural networks (ANNs) are a powerful method for solving classification problems, particularly for clustered data. However, one of the main challenges in using ANNs for general classification problems is determining the best topology (number of layers and neurons per layer) for a given problem or dataset. This study proposes a novel approach to address this challenge by using a optimisation algorithm. The algorithm first solves an external optimisation problem to obtain the optimal topology that maximises the accuracy of supervised learning. After, an inner optimisation problem is used to train the network to detect damage, using the Frequency Response Function of vibration-based measurements as input. To test the proposed methodology, it is applied to three different mechanical systems: metallic beams, rolling bearings, and composite plates. Principal component analysis is used to reduce the number of inputs to the neural network, and the external optimisation problem is solved using Particle swarm optimisation. The results demonstrate that the proposed methodology can accurately assess damage. Through the results, a discussion is presented about the potentialities and limitations of the proposed methodology as a support tool for damage detection.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11668-024-01888-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8055-3275</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1547-7029 |
ispartof | Journal of failure analysis and prevention, 2024-04, Vol.24 (2), p.955-975 |
issn | 1547-7029 1728-5674 1864-1245 |
language | eng |
recordid | cdi_proquest_journals_3039886314 |
source | SpringerNature Journals |
subjects | Algorithms Artificial neural networks Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Classification Composite structures Corrosion and Coatings Damage assessment Damage detection Frequency response functions Machine learning Materials Science Mechanical systems Methodology Network topologies Neural networks Original Research Article Particle swarm optimization Principal components analysis Quality Control Reliability Roller bearings Safety and Risk Solid Mechanics Supervised learning Tribology |
title | Optimising Hyperparameters of Artificial Neural Network Topology for SHM Damage Detection and Identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimising%20Hyperparameters%20of%20Artificial%20Neural%20Network%20Topology%20for%20SHM%20Damage%20Detection%20and%20Identification&rft.jtitle=Journal%20of%20failure%20analysis%20and%20prevention&rft.au=Rosenstock%20V%C3%B6ltz,%20Lu%C3%ADsa&rft.date=2024-04-01&rft.volume=24&rft.issue=2&rft.spage=955&rft.epage=975&rft.pages=955-975&rft.issn=1547-7029&rft.eissn=1728-5674&rft_id=info:doi/10.1007/s11668-024-01888-9&rft_dat=%3Cproquest_cross%3E3039886314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039886314&rft_id=info:pmid/&rfr_iscdi=true |