Optimising Hyperparameters of Artificial Neural Network Topology for SHM Damage Detection and Identification

Artificial neural networks (ANNs) are a powerful method for solving classification problems, particularly for clustered data. However, one of the main challenges in using ANNs for general classification problems is determining the best topology (number of layers and neurons per layer) for a given pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of failure analysis and prevention 2024-04, Vol.24 (2), p.955-975
Hauptverfasser: Rosenstock Völtz, Luísa, Janczkowski Fogaça, Matheus, Lenz Cardoso, Eduardo, De Medeiros, Ricardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue 2
container_start_page 955
container_title Journal of failure analysis and prevention
container_volume 24
creator Rosenstock Völtz, Luísa
Janczkowski Fogaça, Matheus
Lenz Cardoso, Eduardo
De Medeiros, Ricardo
description Artificial neural networks (ANNs) are a powerful method for solving classification problems, particularly for clustered data. However, one of the main challenges in using ANNs for general classification problems is determining the best topology (number of layers and neurons per layer) for a given problem or dataset. This study proposes a novel approach to address this challenge by using a optimisation algorithm. The algorithm first solves an external optimisation problem to obtain the optimal topology that maximises the accuracy of supervised learning. After, an inner optimisation problem is used to train the network to detect damage, using the Frequency Response Function of vibration-based measurements as input. To test the proposed methodology, it is applied to three different mechanical systems: metallic beams, rolling bearings, and composite plates. Principal component analysis is used to reduce the number of inputs to the neural network, and the external optimisation problem is solved using Particle swarm optimisation. The results demonstrate that the proposed methodology can accurately assess damage. Through the results, a discussion is presented about the potentialities and limitations of the proposed methodology as a support tool for damage detection.
doi_str_mv 10.1007/s11668-024-01888-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039886314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039886314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-95be039313edf3617bf3b6c39c9716782b34810eb5256b55b07eb6f98bd2804f3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74ET-yrFqglYAuKGvLTuzIJYmDnQr170lbJHasZjS654x0AbjF6B4jJB4SxpzLDJE8Q1hKmRVnYIIFkRnjIj8fd5aLTCBSXIKrlLYIUYZzMgHNuh9865Pvarjc9zb2OurWDjYmGBycxcE7X3rdwDe7i8cxfIf4CTehD02o99CFCN-Xr3ChW11buBjZcvChg7qr4Kqy3dGgD6drcOF0k-zN75yCj6fHzXyZvayfV_PZS1YSgYasYMYiWlBMbeUox8I4anhJi7IQmAtJDM0lRtYwwrhhzCBhDXeFNBWRKHd0Cu5O3j6Gr51Ng9qGXezGl4qOYik5xfmYIqdUGUNK0TrVR9_quFcYqUOr6tSqGltVx1ZVMUL0BKUx3NU2_qn_oX4AQ_97Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039886314</pqid></control><display><type>article</type><title>Optimising Hyperparameters of Artificial Neural Network Topology for SHM Damage Detection and Identification</title><source>SpringerNature Journals</source><creator>Rosenstock Völtz, Luísa ; Janczkowski Fogaça, Matheus ; Lenz Cardoso, Eduardo ; De Medeiros, Ricardo</creator><creatorcontrib>Rosenstock Völtz, Luísa ; Janczkowski Fogaça, Matheus ; Lenz Cardoso, Eduardo ; De Medeiros, Ricardo</creatorcontrib><description>Artificial neural networks (ANNs) are a powerful method for solving classification problems, particularly for clustered data. However, one of the main challenges in using ANNs for general classification problems is determining the best topology (number of layers and neurons per layer) for a given problem or dataset. This study proposes a novel approach to address this challenge by using a optimisation algorithm. The algorithm first solves an external optimisation problem to obtain the optimal topology that maximises the accuracy of supervised learning. After, an inner optimisation problem is used to train the network to detect damage, using the Frequency Response Function of vibration-based measurements as input. To test the proposed methodology, it is applied to three different mechanical systems: metallic beams, rolling bearings, and composite plates. Principal component analysis is used to reduce the number of inputs to the neural network, and the external optimisation problem is solved using Particle swarm optimisation. The results demonstrate that the proposed methodology can accurately assess damage. Through the results, a discussion is presented about the potentialities and limitations of the proposed methodology as a support tool for damage detection.</description><identifier>ISSN: 1547-7029</identifier><identifier>EISSN: 1728-5674</identifier><identifier>EISSN: 1864-1245</identifier><identifier>DOI: 10.1007/s11668-024-01888-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial neural networks ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Classification ; Composite structures ; Corrosion and Coatings ; Damage assessment ; Damage detection ; Frequency response functions ; Machine learning ; Materials Science ; Mechanical systems ; Methodology ; Network topologies ; Neural networks ; Original Research Article ; Particle swarm optimization ; Principal components analysis ; Quality Control ; Reliability ; Roller bearings ; Safety and Risk ; Solid Mechanics ; Supervised learning ; Tribology</subject><ispartof>Journal of failure analysis and prevention, 2024-04, Vol.24 (2), p.955-975</ispartof><rights>ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-95be039313edf3617bf3b6c39c9716782b34810eb5256b55b07eb6f98bd2804f3</cites><orcidid>0000-0002-8055-3275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Rosenstock Völtz, Luísa</creatorcontrib><creatorcontrib>Janczkowski Fogaça, Matheus</creatorcontrib><creatorcontrib>Lenz Cardoso, Eduardo</creatorcontrib><creatorcontrib>De Medeiros, Ricardo</creatorcontrib><title>Optimising Hyperparameters of Artificial Neural Network Topology for SHM Damage Detection and Identification</title><title>Journal of failure analysis and prevention</title><addtitle>J Fail. Anal. and Preven</addtitle><description>Artificial neural networks (ANNs) are a powerful method for solving classification problems, particularly for clustered data. However, one of the main challenges in using ANNs for general classification problems is determining the best topology (number of layers and neurons per layer) for a given problem or dataset. This study proposes a novel approach to address this challenge by using a optimisation algorithm. The algorithm first solves an external optimisation problem to obtain the optimal topology that maximises the accuracy of supervised learning. After, an inner optimisation problem is used to train the network to detect damage, using the Frequency Response Function of vibration-based measurements as input. To test the proposed methodology, it is applied to three different mechanical systems: metallic beams, rolling bearings, and composite plates. Principal component analysis is used to reduce the number of inputs to the neural network, and the external optimisation problem is solved using Particle swarm optimisation. The results demonstrate that the proposed methodology can accurately assess damage. Through the results, a discussion is presented about the potentialities and limitations of the proposed methodology as a support tool for damage detection.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Classification</subject><subject>Composite structures</subject><subject>Corrosion and Coatings</subject><subject>Damage assessment</subject><subject>Damage detection</subject><subject>Frequency response functions</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Mechanical systems</subject><subject>Methodology</subject><subject>Network topologies</subject><subject>Neural networks</subject><subject>Original Research Article</subject><subject>Particle swarm optimization</subject><subject>Principal components analysis</subject><subject>Quality Control</subject><subject>Reliability</subject><subject>Roller bearings</subject><subject>Safety and Risk</subject><subject>Solid Mechanics</subject><subject>Supervised learning</subject><subject>Tribology</subject><issn>1547-7029</issn><issn>1728-5674</issn><issn>1864-1245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74ET-yrFqglYAuKGvLTuzIJYmDnQr170lbJHasZjS654x0AbjF6B4jJB4SxpzLDJE8Q1hKmRVnYIIFkRnjIj8fd5aLTCBSXIKrlLYIUYZzMgHNuh9865Pvarjc9zb2OurWDjYmGBycxcE7X3rdwDe7i8cxfIf4CTehD02o99CFCN-Xr3ChW11buBjZcvChg7qr4Kqy3dGgD6drcOF0k-zN75yCj6fHzXyZvayfV_PZS1YSgYasYMYiWlBMbeUox8I4anhJi7IQmAtJDM0lRtYwwrhhzCBhDXeFNBWRKHd0Cu5O3j6Gr51Ng9qGXezGl4qOYik5xfmYIqdUGUNK0TrVR9_quFcYqUOr6tSqGltVx1ZVMUL0BKUx3NU2_qn_oX4AQ_97Bw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Rosenstock Völtz, Luísa</creator><creator>Janczkowski Fogaça, Matheus</creator><creator>Lenz Cardoso, Eduardo</creator><creator>De Medeiros, Ricardo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-8055-3275</orcidid></search><sort><creationdate>20240401</creationdate><title>Optimising Hyperparameters of Artificial Neural Network Topology for SHM Damage Detection and Identification</title><author>Rosenstock Völtz, Luísa ; Janczkowski Fogaça, Matheus ; Lenz Cardoso, Eduardo ; De Medeiros, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-95be039313edf3617bf3b6c39c9716782b34810eb5256b55b07eb6f98bd2804f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Classification</topic><topic>Composite structures</topic><topic>Corrosion and Coatings</topic><topic>Damage assessment</topic><topic>Damage detection</topic><topic>Frequency response functions</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Mechanical systems</topic><topic>Methodology</topic><topic>Network topologies</topic><topic>Neural networks</topic><topic>Original Research Article</topic><topic>Particle swarm optimization</topic><topic>Principal components analysis</topic><topic>Quality Control</topic><topic>Reliability</topic><topic>Roller bearings</topic><topic>Safety and Risk</topic><topic>Solid Mechanics</topic><topic>Supervised learning</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenstock Völtz, Luísa</creatorcontrib><creatorcontrib>Janczkowski Fogaça, Matheus</creatorcontrib><creatorcontrib>Lenz Cardoso, Eduardo</creatorcontrib><creatorcontrib>De Medeiros, Ricardo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of failure analysis and prevention</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenstock Völtz, Luísa</au><au>Janczkowski Fogaça, Matheus</au><au>Lenz Cardoso, Eduardo</au><au>De Medeiros, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimising Hyperparameters of Artificial Neural Network Topology for SHM Damage Detection and Identification</atitle><jtitle>Journal of failure analysis and prevention</jtitle><stitle>J Fail. Anal. and Preven</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>24</volume><issue>2</issue><spage>955</spage><epage>975</epage><pages>955-975</pages><issn>1547-7029</issn><eissn>1728-5674</eissn><eissn>1864-1245</eissn><abstract>Artificial neural networks (ANNs) are a powerful method for solving classification problems, particularly for clustered data. However, one of the main challenges in using ANNs for general classification problems is determining the best topology (number of layers and neurons per layer) for a given problem or dataset. This study proposes a novel approach to address this challenge by using a optimisation algorithm. The algorithm first solves an external optimisation problem to obtain the optimal topology that maximises the accuracy of supervised learning. After, an inner optimisation problem is used to train the network to detect damage, using the Frequency Response Function of vibration-based measurements as input. To test the proposed methodology, it is applied to three different mechanical systems: metallic beams, rolling bearings, and composite plates. Principal component analysis is used to reduce the number of inputs to the neural network, and the external optimisation problem is solved using Particle swarm optimisation. The results demonstrate that the proposed methodology can accurately assess damage. Through the results, a discussion is presented about the potentialities and limitations of the proposed methodology as a support tool for damage detection.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11668-024-01888-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8055-3275</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1547-7029
ispartof Journal of failure analysis and prevention, 2024-04, Vol.24 (2), p.955-975
issn 1547-7029
1728-5674
1864-1245
language eng
recordid cdi_proquest_journals_3039886314
source SpringerNature Journals
subjects Algorithms
Artificial neural networks
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Classification
Composite structures
Corrosion and Coatings
Damage assessment
Damage detection
Frequency response functions
Machine learning
Materials Science
Mechanical systems
Methodology
Network topologies
Neural networks
Original Research Article
Particle swarm optimization
Principal components analysis
Quality Control
Reliability
Roller bearings
Safety and Risk
Solid Mechanics
Supervised learning
Tribology
title Optimising Hyperparameters of Artificial Neural Network Topology for SHM Damage Detection and Identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimising%20Hyperparameters%20of%20Artificial%20Neural%20Network%20Topology%20for%20SHM%20Damage%20Detection%20and%20Identification&rft.jtitle=Journal%20of%20failure%20analysis%20and%20prevention&rft.au=Rosenstock%20V%C3%B6ltz,%20Lu%C3%ADsa&rft.date=2024-04-01&rft.volume=24&rft.issue=2&rft.spage=955&rft.epage=975&rft.pages=955-975&rft.issn=1547-7029&rft.eissn=1728-5674&rft_id=info:doi/10.1007/s11668-024-01888-9&rft_dat=%3Cproquest_cross%3E3039886314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039886314&rft_id=info:pmid/&rfr_iscdi=true