A Simple Numerical Framework for Finite Deflection of Piezoelectric Beams
AbstractPiezoelectric materials can develop mechanical strain upon applying electric voltage and vice-versa. A piezoelectric bimorph, widely used in various sensors and actuator applications, essentially behaves like a beam and consists of a nonpiezoelectric material substrate layer glued between tw...
Gespeichert in:
Veröffentlicht in: | Journal of aerospace engineering 2024-07, Vol.37 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of aerospace engineering |
container_volume | 37 |
creator | Pandit, D. Mukherjee, I. Ray, S. |
description | AbstractPiezoelectric materials can develop mechanical strain upon applying electric voltage and vice-versa. A piezoelectric bimorph, widely used in various sensors and actuator applications, essentially behaves like a beam and consists of a nonpiezoelectric material substrate layer glued between two piezoelectric layers. The application of an electric field alone can induce the bending of such a beam. Studies on the modeling of the piezoelectric bimorph are mostly restricted to the small deflection regime. In the present work, a simple numerical method is proposed to obtain the large deflection response of any piezoelectric bimorph. To begin with, the governing equation of a cantilever bimorph under electric field and end load is obtained. The nonlinear governing equation is then linearized with respect to the current time step. Subsequently, the linearized equation is solved using the RK4 method. From the numerical results, it is found that the response of the key design parameter, namely free displacement is considerably different from that predicted from small deflection analysis. Also, as the entities involved are suitably nondimensionalized, the results are directly relatable to all classes of piezoelectric materials. The nondimensionalization has also paved the way for better insight into the physical problem by rendering a simple mathematical representation. |
doi_str_mv | 10.1061/JAEEEZ.ASENG-5144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039796393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039796393</sourcerecordid><originalsourceid>FETCH-LOGICAL-a264t-a4145d60fe9d6985fdccd279a62d4f76f9b58a40bea1ff0c3a9071409b80324a3</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKd_gLeA586k-dHmWGc3JzKF6cVLyNIv0NkuM-kQ_evtrODJ0wcv7_N-8CB0ScmEEkmv74uyLF8nxapczhNBOT9CI6o4S4RIxTEakVyxhLKUnqKzGDeEUC5VOkKLAq_qdtcAXu5bCLU1DZ4F08KHD2_Y-YBn9bbuAN-Ca8B2td9i7_BTDV8eDkGP4BswbTxHJ840ES5-7xi9zMrn6V3y8DhfTIuHxKSSd4nhlItKEgeqkioXrrK2SjNlZFpxl0mn1iI3nKzBUOeIZUaRjHKi1jlhKTdsjK6G3V3w73uInd74fdj2LzUjTGVKMsX6Fh1aNvgYAzi9C3VrwqemRB-M6cGY_jGmD8Z6ZjIwJlr4W_0f-AYYR20_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039796393</pqid></control><display><type>article</type><title>A Simple Numerical Framework for Finite Deflection of Piezoelectric Beams</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Pandit, D. ; Mukherjee, I. ; Ray, S.</creator><creatorcontrib>Pandit, D. ; Mukherjee, I. ; Ray, S.</creatorcontrib><description>AbstractPiezoelectric materials can develop mechanical strain upon applying electric voltage and vice-versa. A piezoelectric bimorph, widely used in various sensors and actuator applications, essentially behaves like a beam and consists of a nonpiezoelectric material substrate layer glued between two piezoelectric layers. The application of an electric field alone can induce the bending of such a beam. Studies on the modeling of the piezoelectric bimorph are mostly restricted to the small deflection regime. In the present work, a simple numerical method is proposed to obtain the large deflection response of any piezoelectric bimorph. To begin with, the governing equation of a cantilever bimorph under electric field and end load is obtained. The nonlinear governing equation is then linearized with respect to the current time step. Subsequently, the linearized equation is solved using the RK4 method. From the numerical results, it is found that the response of the key design parameter, namely free displacement is considerably different from that predicted from small deflection analysis. Also, as the entities involved are suitably nondimensionalized, the results are directly relatable to all classes of piezoelectric materials. The nondimensionalization has also paved the way for better insight into the physical problem by rendering a simple mathematical representation.</description><identifier>ISSN: 0893-1321</identifier><identifier>EISSN: 1943-5525</identifier><identifier>DOI: 10.1061/JAEEEZ.ASENG-5144</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Actuators ; Bimorphs ; Cantilever beams ; Deflection ; Design parameters ; Electric fields ; Linearization ; Numerical methods ; Strain ; Substrates ; Technical Papers</subject><ispartof>Journal of aerospace engineering, 2024-07, Vol.37 (4)</ispartof><rights>2024 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a264t-a4145d60fe9d6985fdccd279a62d4f76f9b58a40bea1ff0c3a9071409b80324a3</cites><orcidid>0000-0003-2797-3075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/JAEEEZ.ASENG-5144$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/JAEEEZ.ASENG-5144$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75936,75944</link.rule.ids></links><search><creatorcontrib>Pandit, D.</creatorcontrib><creatorcontrib>Mukherjee, I.</creatorcontrib><creatorcontrib>Ray, S.</creatorcontrib><title>A Simple Numerical Framework for Finite Deflection of Piezoelectric Beams</title><title>Journal of aerospace engineering</title><description>AbstractPiezoelectric materials can develop mechanical strain upon applying electric voltage and vice-versa. A piezoelectric bimorph, widely used in various sensors and actuator applications, essentially behaves like a beam and consists of a nonpiezoelectric material substrate layer glued between two piezoelectric layers. The application of an electric field alone can induce the bending of such a beam. Studies on the modeling of the piezoelectric bimorph are mostly restricted to the small deflection regime. In the present work, a simple numerical method is proposed to obtain the large deflection response of any piezoelectric bimorph. To begin with, the governing equation of a cantilever bimorph under electric field and end load is obtained. The nonlinear governing equation is then linearized with respect to the current time step. Subsequently, the linearized equation is solved using the RK4 method. From the numerical results, it is found that the response of the key design parameter, namely free displacement is considerably different from that predicted from small deflection analysis. Also, as the entities involved are suitably nondimensionalized, the results are directly relatable to all classes of piezoelectric materials. The nondimensionalization has also paved the way for better insight into the physical problem by rendering a simple mathematical representation.</description><subject>Actuators</subject><subject>Bimorphs</subject><subject>Cantilever beams</subject><subject>Deflection</subject><subject>Design parameters</subject><subject>Electric fields</subject><subject>Linearization</subject><subject>Numerical methods</subject><subject>Strain</subject><subject>Substrates</subject><subject>Technical Papers</subject><issn>0893-1321</issn><issn>1943-5525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoOKd_gLeA586k-dHmWGc3JzKF6cVLyNIv0NkuM-kQ_evtrODJ0wcv7_N-8CB0ScmEEkmv74uyLF8nxapczhNBOT9CI6o4S4RIxTEakVyxhLKUnqKzGDeEUC5VOkKLAq_qdtcAXu5bCLU1DZ4F08KHD2_Y-YBn9bbuAN-Ca8B2td9i7_BTDV8eDkGP4BswbTxHJ840ES5-7xi9zMrn6V3y8DhfTIuHxKSSd4nhlItKEgeqkioXrrK2SjNlZFpxl0mn1iI3nKzBUOeIZUaRjHKi1jlhKTdsjK6G3V3w73uInd74fdj2LzUjTGVKMsX6Fh1aNvgYAzi9C3VrwqemRB-M6cGY_jGmD8Z6ZjIwJlr4W_0f-AYYR20_</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Pandit, D.</creator><creator>Mukherjee, I.</creator><creator>Ray, S.</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2797-3075</orcidid></search><sort><creationdate>20240701</creationdate><title>A Simple Numerical Framework for Finite Deflection of Piezoelectric Beams</title><author>Pandit, D. ; Mukherjee, I. ; Ray, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a264t-a4145d60fe9d6985fdccd279a62d4f76f9b58a40bea1ff0c3a9071409b80324a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Bimorphs</topic><topic>Cantilever beams</topic><topic>Deflection</topic><topic>Design parameters</topic><topic>Electric fields</topic><topic>Linearization</topic><topic>Numerical methods</topic><topic>Strain</topic><topic>Substrates</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandit, D.</creatorcontrib><creatorcontrib>Mukherjee, I.</creatorcontrib><creatorcontrib>Ray, S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandit, D.</au><au>Mukherjee, I.</au><au>Ray, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Numerical Framework for Finite Deflection of Piezoelectric Beams</atitle><jtitle>Journal of aerospace engineering</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>37</volume><issue>4</issue><issn>0893-1321</issn><eissn>1943-5525</eissn><abstract>AbstractPiezoelectric materials can develop mechanical strain upon applying electric voltage and vice-versa. A piezoelectric bimorph, widely used in various sensors and actuator applications, essentially behaves like a beam and consists of a nonpiezoelectric material substrate layer glued between two piezoelectric layers. The application of an electric field alone can induce the bending of such a beam. Studies on the modeling of the piezoelectric bimorph are mostly restricted to the small deflection regime. In the present work, a simple numerical method is proposed to obtain the large deflection response of any piezoelectric bimorph. To begin with, the governing equation of a cantilever bimorph under electric field and end load is obtained. The nonlinear governing equation is then linearized with respect to the current time step. Subsequently, the linearized equation is solved using the RK4 method. From the numerical results, it is found that the response of the key design parameter, namely free displacement is considerably different from that predicted from small deflection analysis. Also, as the entities involved are suitably nondimensionalized, the results are directly relatable to all classes of piezoelectric materials. The nondimensionalization has also paved the way for better insight into the physical problem by rendering a simple mathematical representation.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/JAEEEZ.ASENG-5144</doi><orcidid>https://orcid.org/0000-0003-2797-3075</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-1321 |
ispartof | Journal of aerospace engineering, 2024-07, Vol.37 (4) |
issn | 0893-1321 1943-5525 |
language | eng |
recordid | cdi_proquest_journals_3039796393 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Actuators Bimorphs Cantilever beams Deflection Design parameters Electric fields Linearization Numerical methods Strain Substrates Technical Papers |
title | A Simple Numerical Framework for Finite Deflection of Piezoelectric Beams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Numerical%20Framework%20for%20Finite%20Deflection%20of%20Piezoelectric%20Beams&rft.jtitle=Journal%20of%20aerospace%20engineering&rft.au=Pandit,%20D.&rft.date=2024-07-01&rft.volume=37&rft.issue=4&rft.issn=0893-1321&rft.eissn=1943-5525&rft_id=info:doi/10.1061/JAEEEZ.ASENG-5144&rft_dat=%3Cproquest_cross%3E3039796393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039796393&rft_id=info:pmid/&rfr_iscdi=true |