Multiobjective Bayesian optimization for a 15‐dB back‐off high‐efficiency load modulated balanced amplifier design
In this article, multiobjecive Bayesian optimization (MBO) with a non‐penalization strategy is proposed to design a 15‐dB back‐off high‐efficiency load modulated balanced amplifier (LMBA). Applying the proposed method, the output matching networks of the LMBA are optimized to achieve proper load mod...
Gespeichert in:
Veröffentlicht in: | International journal of numerical modelling 2024-03, Vol.37 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | International journal of numerical modelling |
container_volume | 37 |
creator | Chen, Peng Qi, Lin Zhao, Yinshuang Yu, Luqi Yu, Chao |
description | In this article, multiobjecive Bayesian optimization (MBO) with a non‐penalization strategy is proposed to design a 15‐dB back‐off high‐efficiency load modulated balanced amplifier (LMBA). Applying the proposed method, the output matching networks of the LMBA are optimized to achieve proper load modulation behaviors that providing good performance. To verify the proposed method, a 2.0‐GHz LMBA is designed and measured. Experimental results show that LMBA achieves an output power of 44.5 dBm with a gain higher than 6.6 dB at saturation. The measured drain efficiency (DE)/power‐added efficiency (PAE) are 67%/52% at saturation, 54%/43% at 9‐dB back‐off, and 52%/46% at 15‐dB back‐off, respectively. Tested with 20‐MHz signal with 10‐dB peak‐to‐average power ratio (PAPR) and a 256‐quadrature amplitude modulation (QAM) scheme, the LMBA achieves adjacent channel leakage ratio (ACLR) levels of −46.7/−47.5 dBc and an error vector magnitude (EVM) of 1.2% after digital predistortion. |
doi_str_mv | 10.1002/jnm.3150 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039651144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039651144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-f553842fd24e6780b3a12ea390ced39841a43ead9144bba81aaae75bf425f9583</originalsourceid><addsrcrecordid>eNp10EtOwzAQBmALgUQpSBzBEhs2KX628ZIinmphA2trktitQxKHPICw4gickZPgUras_Ev-Zkb6ETqmZEIJYWd5VU44lWQHjShRKqKMiF00IrESEeczso8O2jYnhATERuh92Red80lu0s69GjyHwbQOKuzrzpXuA8Jnha1vMGAqvz-_sjlOIH0OyVuL1261DtFY61JnqnTAhYcMlz7rC-hMFmwBVRoClHXhrDMNzsKBVXWI9iwUrTn6e8fo6ery8eImWjxc316cL6KUKU4iKyWPBbMZE2Y6i0nCgTIDXJGwlKtYUBDcQKaoEEkCMQUAM5OJFUxaJWM-RifbvXXjX3rTdjr3fVOFk5oTrqaShsmgTrcqbXzbNsbqunElNIOmRG961aFXvek10GhL31xhhn-dvrtf_vof5eh9HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039651144</pqid></control><display><type>article</type><title>Multiobjective Bayesian optimization for a 15‐dB back‐off high‐efficiency load modulated balanced amplifier design</title><source>Wiley Journals</source><creator>Chen, Peng ; Qi, Lin ; Zhao, Yinshuang ; Yu, Luqi ; Yu, Chao</creator><creatorcontrib>Chen, Peng ; Qi, Lin ; Zhao, Yinshuang ; Yu, Luqi ; Yu, Chao</creatorcontrib><description>In this article, multiobjecive Bayesian optimization (MBO) with a non‐penalization strategy is proposed to design a 15‐dB back‐off high‐efficiency load modulated balanced amplifier (LMBA). Applying the proposed method, the output matching networks of the LMBA are optimized to achieve proper load modulation behaviors that providing good performance. To verify the proposed method, a 2.0‐GHz LMBA is designed and measured. Experimental results show that LMBA achieves an output power of 44.5 dBm with a gain higher than 6.6 dB at saturation. The measured drain efficiency (DE)/power‐added efficiency (PAE) are 67%/52% at saturation, 54%/43% at 9‐dB back‐off, and 52%/46% at 15‐dB back‐off, respectively. Tested with 20‐MHz signal with 10‐dB peak‐to‐average power ratio (PAPR) and a 256‐quadrature amplitude modulation (QAM) scheme, the LMBA achieves adjacent channel leakage ratio (ACLR) levels of −46.7/−47.5 dBc and an error vector magnitude (EVM) of 1.2% after digital predistortion.</description><identifier>ISSN: 0894-3370</identifier><identifier>EISSN: 1099-1204</identifier><identifier>DOI: 10.1002/jnm.3150</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>Amplifier design ; Bayesian analysis ; Design optimization ; high‐efficiency ; load modulated balanced amplifier ; multiobjective Bayesian optimization ; Multiple objective analysis ; Push-pull amplifiers ; Quadrature amplitude modulation</subject><ispartof>International journal of numerical modelling, 2024-03, Vol.37 (2), p.n/a</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-f553842fd24e6780b3a12ea390ced39841a43ead9144bba81aaae75bf425f9583</citedby><cites>FETCH-LOGICAL-c2930-f553842fd24e6780b3a12ea390ced39841a43ead9144bba81aaae75bf425f9583</cites><orcidid>0000-0001-7925-5695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnm.3150$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnm.3150$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Qi, Lin</creatorcontrib><creatorcontrib>Zhao, Yinshuang</creatorcontrib><creatorcontrib>Yu, Luqi</creatorcontrib><creatorcontrib>Yu, Chao</creatorcontrib><title>Multiobjective Bayesian optimization for a 15‐dB back‐off high‐efficiency load modulated balanced amplifier design</title><title>International journal of numerical modelling</title><description>In this article, multiobjecive Bayesian optimization (MBO) with a non‐penalization strategy is proposed to design a 15‐dB back‐off high‐efficiency load modulated balanced amplifier (LMBA). Applying the proposed method, the output matching networks of the LMBA are optimized to achieve proper load modulation behaviors that providing good performance. To verify the proposed method, a 2.0‐GHz LMBA is designed and measured. Experimental results show that LMBA achieves an output power of 44.5 dBm with a gain higher than 6.6 dB at saturation. The measured drain efficiency (DE)/power‐added efficiency (PAE) are 67%/52% at saturation, 54%/43% at 9‐dB back‐off, and 52%/46% at 15‐dB back‐off, respectively. Tested with 20‐MHz signal with 10‐dB peak‐to‐average power ratio (PAPR) and a 256‐quadrature amplitude modulation (QAM) scheme, the LMBA achieves adjacent channel leakage ratio (ACLR) levels of −46.7/−47.5 dBc and an error vector magnitude (EVM) of 1.2% after digital predistortion.</description><subject>Amplifier design</subject><subject>Bayesian analysis</subject><subject>Design optimization</subject><subject>high‐efficiency</subject><subject>load modulated balanced amplifier</subject><subject>multiobjective Bayesian optimization</subject><subject>Multiple objective analysis</subject><subject>Push-pull amplifiers</subject><subject>Quadrature amplitude modulation</subject><issn>0894-3370</issn><issn>1099-1204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10EtOwzAQBmALgUQpSBzBEhs2KX628ZIinmphA2trktitQxKHPICw4gickZPgUras_Ev-Zkb6ETqmZEIJYWd5VU44lWQHjShRKqKMiF00IrESEeczso8O2jYnhATERuh92Red80lu0s69GjyHwbQOKuzrzpXuA8Jnha1vMGAqvz-_sjlOIH0OyVuL1261DtFY61JnqnTAhYcMlz7rC-hMFmwBVRoClHXhrDMNzsKBVXWI9iwUrTn6e8fo6ery8eImWjxc316cL6KUKU4iKyWPBbMZE2Y6i0nCgTIDXJGwlKtYUBDcQKaoEEkCMQUAM5OJFUxaJWM-RifbvXXjX3rTdjr3fVOFk5oTrqaShsmgTrcqbXzbNsbqunElNIOmRG961aFXvek10GhL31xhhn-dvrtf_vof5eh9HQ</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Chen, Peng</creator><creator>Qi, Lin</creator><creator>Zhao, Yinshuang</creator><creator>Yu, Luqi</creator><creator>Yu, Chao</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7925-5695</orcidid></search><sort><creationdate>202403</creationdate><title>Multiobjective Bayesian optimization for a 15‐dB back‐off high‐efficiency load modulated balanced amplifier design</title><author>Chen, Peng ; Qi, Lin ; Zhao, Yinshuang ; Yu, Luqi ; Yu, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-f553842fd24e6780b3a12ea390ced39841a43ead9144bba81aaae75bf425f9583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amplifier design</topic><topic>Bayesian analysis</topic><topic>Design optimization</topic><topic>high‐efficiency</topic><topic>load modulated balanced amplifier</topic><topic>multiobjective Bayesian optimization</topic><topic>Multiple objective analysis</topic><topic>Push-pull amplifiers</topic><topic>Quadrature amplitude modulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Qi, Lin</creatorcontrib><creatorcontrib>Zhao, Yinshuang</creatorcontrib><creatorcontrib>Yu, Luqi</creatorcontrib><creatorcontrib>Yu, Chao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of numerical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Peng</au><au>Qi, Lin</au><au>Zhao, Yinshuang</au><au>Yu, Luqi</au><au>Yu, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective Bayesian optimization for a 15‐dB back‐off high‐efficiency load modulated balanced amplifier design</atitle><jtitle>International journal of numerical modelling</jtitle><date>2024-03</date><risdate>2024</risdate><volume>37</volume><issue>2</issue><epage>n/a</epage><issn>0894-3370</issn><eissn>1099-1204</eissn><abstract>In this article, multiobjecive Bayesian optimization (MBO) with a non‐penalization strategy is proposed to design a 15‐dB back‐off high‐efficiency load modulated balanced amplifier (LMBA). Applying the proposed method, the output matching networks of the LMBA are optimized to achieve proper load modulation behaviors that providing good performance. To verify the proposed method, a 2.0‐GHz LMBA is designed and measured. Experimental results show that LMBA achieves an output power of 44.5 dBm with a gain higher than 6.6 dB at saturation. The measured drain efficiency (DE)/power‐added efficiency (PAE) are 67%/52% at saturation, 54%/43% at 9‐dB back‐off, and 52%/46% at 15‐dB back‐off, respectively. Tested with 20‐MHz signal with 10‐dB peak‐to‐average power ratio (PAPR) and a 256‐quadrature amplitude modulation (QAM) scheme, the LMBA achieves adjacent channel leakage ratio (ACLR) levels of −46.7/−47.5 dBc and an error vector magnitude (EVM) of 1.2% after digital predistortion.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/jnm.3150</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7925-5695</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-3370 |
ispartof | International journal of numerical modelling, 2024-03, Vol.37 (2), p.n/a |
issn | 0894-3370 1099-1204 |
language | eng |
recordid | cdi_proquest_journals_3039651144 |
source | Wiley Journals |
subjects | Amplifier design Bayesian analysis Design optimization high‐efficiency load modulated balanced amplifier multiobjective Bayesian optimization Multiple objective analysis Push-pull amplifiers Quadrature amplitude modulation |
title | Multiobjective Bayesian optimization for a 15‐dB back‐off high‐efficiency load modulated balanced amplifier design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20Bayesian%20optimization%20for%20a%2015%E2%80%90dB%20back%E2%80%90off%20high%E2%80%90efficiency%20load%20modulated%20balanced%20amplifier%20design&rft.jtitle=International%20journal%20of%20numerical%20modelling&rft.au=Chen,%20Peng&rft.date=2024-03&rft.volume=37&rft.issue=2&rft.epage=n/a&rft.issn=0894-3370&rft.eissn=1099-1204&rft_id=info:doi/10.1002/jnm.3150&rft_dat=%3Cproquest_cross%3E3039651144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039651144&rft_id=info:pmid/&rfr_iscdi=true |