Multiobjective Bayesian optimization for a 15‐dB back‐off high‐efficiency load modulated balanced amplifier design

In this article, multiobjecive Bayesian optimization (MBO) with a non‐penalization strategy is proposed to design a 15‐dB back‐off high‐efficiency load modulated balanced amplifier (LMBA). Applying the proposed method, the output matching networks of the LMBA are optimized to achieve proper load mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of numerical modelling 2024-03, Vol.37 (2), p.n/a
Hauptverfasser: Chen, Peng, Qi, Lin, Zhao, Yinshuang, Yu, Luqi, Yu, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title International journal of numerical modelling
container_volume 37
creator Chen, Peng
Qi, Lin
Zhao, Yinshuang
Yu, Luqi
Yu, Chao
description In this article, multiobjecive Bayesian optimization (MBO) with a non‐penalization strategy is proposed to design a 15‐dB back‐off high‐efficiency load modulated balanced amplifier (LMBA). Applying the proposed method, the output matching networks of the LMBA are optimized to achieve proper load modulation behaviors that providing good performance. To verify the proposed method, a 2.0‐GHz LMBA is designed and measured. Experimental results show that LMBA achieves an output power of 44.5 dBm with a gain higher than 6.6 dB at saturation. The measured drain efficiency (DE)/power‐added efficiency (PAE) are 67%/52% at saturation, 54%/43% at 9‐dB back‐off, and 52%/46% at 15‐dB back‐off, respectively. Tested with 20‐MHz signal with 10‐dB peak‐to‐average power ratio (PAPR) and a 256‐quadrature amplitude modulation (QAM) scheme, the LMBA achieves adjacent channel leakage ratio (ACLR) levels of −46.7/−47.5 dBc and an error vector magnitude (EVM) of 1.2% after digital predistortion.
doi_str_mv 10.1002/jnm.3150
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039651144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039651144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-f553842fd24e6780b3a12ea390ced39841a43ead9144bba81aaae75bf425f9583</originalsourceid><addsrcrecordid>eNp10EtOwzAQBmALgUQpSBzBEhs2KX628ZIinmphA2trktitQxKHPICw4gickZPgUras_Ev-Zkb6ETqmZEIJYWd5VU44lWQHjShRKqKMiF00IrESEeczso8O2jYnhATERuh92Red80lu0s69GjyHwbQOKuzrzpXuA8Jnha1vMGAqvz-_sjlOIH0OyVuL1261DtFY61JnqnTAhYcMlz7rC-hMFmwBVRoClHXhrDMNzsKBVXWI9iwUrTn6e8fo6ery8eImWjxc316cL6KUKU4iKyWPBbMZE2Y6i0nCgTIDXJGwlKtYUBDcQKaoEEkCMQUAM5OJFUxaJWM-RifbvXXjX3rTdjr3fVOFk5oTrqaShsmgTrcqbXzbNsbqunElNIOmRG961aFXvek10GhL31xhhn-dvrtf_vof5eh9HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039651144</pqid></control><display><type>article</type><title>Multiobjective Bayesian optimization for a 15‐dB back‐off high‐efficiency load modulated balanced amplifier design</title><source>Wiley Journals</source><creator>Chen, Peng ; Qi, Lin ; Zhao, Yinshuang ; Yu, Luqi ; Yu, Chao</creator><creatorcontrib>Chen, Peng ; Qi, Lin ; Zhao, Yinshuang ; Yu, Luqi ; Yu, Chao</creatorcontrib><description>In this article, multiobjecive Bayesian optimization (MBO) with a non‐penalization strategy is proposed to design a 15‐dB back‐off high‐efficiency load modulated balanced amplifier (LMBA). Applying the proposed method, the output matching networks of the LMBA are optimized to achieve proper load modulation behaviors that providing good performance. To verify the proposed method, a 2.0‐GHz LMBA is designed and measured. Experimental results show that LMBA achieves an output power of 44.5 dBm with a gain higher than 6.6 dB at saturation. The measured drain efficiency (DE)/power‐added efficiency (PAE) are 67%/52% at saturation, 54%/43% at 9‐dB back‐off, and 52%/46% at 15‐dB back‐off, respectively. Tested with 20‐MHz signal with 10‐dB peak‐to‐average power ratio (PAPR) and a 256‐quadrature amplitude modulation (QAM) scheme, the LMBA achieves adjacent channel leakage ratio (ACLR) levels of −46.7/−47.5 dBc and an error vector magnitude (EVM) of 1.2% after digital predistortion.</description><identifier>ISSN: 0894-3370</identifier><identifier>EISSN: 1099-1204</identifier><identifier>DOI: 10.1002/jnm.3150</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Amplifier design ; Bayesian analysis ; Design optimization ; high‐efficiency ; load modulated balanced amplifier ; multiobjective Bayesian optimization ; Multiple objective analysis ; Push-pull amplifiers ; Quadrature amplitude modulation</subject><ispartof>International journal of numerical modelling, 2024-03, Vol.37 (2), p.n/a</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-f553842fd24e6780b3a12ea390ced39841a43ead9144bba81aaae75bf425f9583</citedby><cites>FETCH-LOGICAL-c2930-f553842fd24e6780b3a12ea390ced39841a43ead9144bba81aaae75bf425f9583</cites><orcidid>0000-0001-7925-5695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnm.3150$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnm.3150$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Qi, Lin</creatorcontrib><creatorcontrib>Zhao, Yinshuang</creatorcontrib><creatorcontrib>Yu, Luqi</creatorcontrib><creatorcontrib>Yu, Chao</creatorcontrib><title>Multiobjective Bayesian optimization for a 15‐dB back‐off high‐efficiency load modulated balanced amplifier design</title><title>International journal of numerical modelling</title><description>In this article, multiobjecive Bayesian optimization (MBO) with a non‐penalization strategy is proposed to design a 15‐dB back‐off high‐efficiency load modulated balanced amplifier (LMBA). Applying the proposed method, the output matching networks of the LMBA are optimized to achieve proper load modulation behaviors that providing good performance. To verify the proposed method, a 2.0‐GHz LMBA is designed and measured. Experimental results show that LMBA achieves an output power of 44.5 dBm with a gain higher than 6.6 dB at saturation. The measured drain efficiency (DE)/power‐added efficiency (PAE) are 67%/52% at saturation, 54%/43% at 9‐dB back‐off, and 52%/46% at 15‐dB back‐off, respectively. Tested with 20‐MHz signal with 10‐dB peak‐to‐average power ratio (PAPR) and a 256‐quadrature amplitude modulation (QAM) scheme, the LMBA achieves adjacent channel leakage ratio (ACLR) levels of −46.7/−47.5 dBc and an error vector magnitude (EVM) of 1.2% after digital predistortion.</description><subject>Amplifier design</subject><subject>Bayesian analysis</subject><subject>Design optimization</subject><subject>high‐efficiency</subject><subject>load modulated balanced amplifier</subject><subject>multiobjective Bayesian optimization</subject><subject>Multiple objective analysis</subject><subject>Push-pull amplifiers</subject><subject>Quadrature amplitude modulation</subject><issn>0894-3370</issn><issn>1099-1204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10EtOwzAQBmALgUQpSBzBEhs2KX628ZIinmphA2trktitQxKHPICw4gickZPgUras_Ev-Zkb6ETqmZEIJYWd5VU44lWQHjShRKqKMiF00IrESEeczso8O2jYnhATERuh92Red80lu0s69GjyHwbQOKuzrzpXuA8Jnha1vMGAqvz-_sjlOIH0OyVuL1261DtFY61JnqnTAhYcMlz7rC-hMFmwBVRoClHXhrDMNzsKBVXWI9iwUrTn6e8fo6ery8eImWjxc316cL6KUKU4iKyWPBbMZE2Y6i0nCgTIDXJGwlKtYUBDcQKaoEEkCMQUAM5OJFUxaJWM-RifbvXXjX3rTdjr3fVOFk5oTrqaShsmgTrcqbXzbNsbqunElNIOmRG961aFXvek10GhL31xhhn-dvrtf_vof5eh9HQ</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Chen, Peng</creator><creator>Qi, Lin</creator><creator>Zhao, Yinshuang</creator><creator>Yu, Luqi</creator><creator>Yu, Chao</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7925-5695</orcidid></search><sort><creationdate>202403</creationdate><title>Multiobjective Bayesian optimization for a 15‐dB back‐off high‐efficiency load modulated balanced amplifier design</title><author>Chen, Peng ; Qi, Lin ; Zhao, Yinshuang ; Yu, Luqi ; Yu, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-f553842fd24e6780b3a12ea390ced39841a43ead9144bba81aaae75bf425f9583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amplifier design</topic><topic>Bayesian analysis</topic><topic>Design optimization</topic><topic>high‐efficiency</topic><topic>load modulated balanced amplifier</topic><topic>multiobjective Bayesian optimization</topic><topic>Multiple objective analysis</topic><topic>Push-pull amplifiers</topic><topic>Quadrature amplitude modulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Qi, Lin</creatorcontrib><creatorcontrib>Zhao, Yinshuang</creatorcontrib><creatorcontrib>Yu, Luqi</creatorcontrib><creatorcontrib>Yu, Chao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of numerical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Peng</au><au>Qi, Lin</au><au>Zhao, Yinshuang</au><au>Yu, Luqi</au><au>Yu, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective Bayesian optimization for a 15‐dB back‐off high‐efficiency load modulated balanced amplifier design</atitle><jtitle>International journal of numerical modelling</jtitle><date>2024-03</date><risdate>2024</risdate><volume>37</volume><issue>2</issue><epage>n/a</epage><issn>0894-3370</issn><eissn>1099-1204</eissn><abstract>In this article, multiobjecive Bayesian optimization (MBO) with a non‐penalization strategy is proposed to design a 15‐dB back‐off high‐efficiency load modulated balanced amplifier (LMBA). Applying the proposed method, the output matching networks of the LMBA are optimized to achieve proper load modulation behaviors that providing good performance. To verify the proposed method, a 2.0‐GHz LMBA is designed and measured. Experimental results show that LMBA achieves an output power of 44.5 dBm with a gain higher than 6.6 dB at saturation. The measured drain efficiency (DE)/power‐added efficiency (PAE) are 67%/52% at saturation, 54%/43% at 9‐dB back‐off, and 52%/46% at 15‐dB back‐off, respectively. Tested with 20‐MHz signal with 10‐dB peak‐to‐average power ratio (PAPR) and a 256‐quadrature amplitude modulation (QAM) scheme, the LMBA achieves adjacent channel leakage ratio (ACLR) levels of −46.7/−47.5 dBc and an error vector magnitude (EVM) of 1.2% after digital predistortion.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/jnm.3150</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7925-5695</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0894-3370
ispartof International journal of numerical modelling, 2024-03, Vol.37 (2), p.n/a
issn 0894-3370
1099-1204
language eng
recordid cdi_proquest_journals_3039651144
source Wiley Journals
subjects Amplifier design
Bayesian analysis
Design optimization
high‐efficiency
load modulated balanced amplifier
multiobjective Bayesian optimization
Multiple objective analysis
Push-pull amplifiers
Quadrature amplitude modulation
title Multiobjective Bayesian optimization for a 15‐dB back‐off high‐efficiency load modulated balanced amplifier design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20Bayesian%20optimization%20for%20a%2015%E2%80%90dB%20back%E2%80%90off%20high%E2%80%90efficiency%20load%20modulated%20balanced%20amplifier%20design&rft.jtitle=International%20journal%20of%20numerical%20modelling&rft.au=Chen,%20Peng&rft.date=2024-03&rft.volume=37&rft.issue=2&rft.epage=n/a&rft.issn=0894-3370&rft.eissn=1099-1204&rft_id=info:doi/10.1002/jnm.3150&rft_dat=%3Cproquest_cross%3E3039651144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039651144&rft_id=info:pmid/&rfr_iscdi=true