A Bayesian model for multicriteria sorting problems
Decision makers are often interested in assigning alternatives to preference classes under multiple criteria instead of choosing the best alternative or ranking all the alternatives. Firms need to categorize suppliers based on performance, credit agencies need to classify customers according to thei...
Gespeichert in:
Veröffentlicht in: | IIE transactions 2024-07, Vol.56 (7), p.777-791 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 791 |
---|---|
container_issue | 7 |
container_start_page | 777 |
container_title | IIE transactions |
container_volume | 56 |
creator | Ulu, Canan Shively, Thomas S. |
description | Decision makers are often interested in assigning alternatives to preference classes under multiple criteria instead of choosing the best alternative or ranking all the alternatives. Firms need to categorize suppliers based on performance, credit agencies need to classify customers according to their risks, and graduate programs need to decide who to admit. In this article, we develop an interactive Bayesian algorithm to aid a decision maker (DM) with a multicriteria sorting problem by learning about her preferences and using that knowledge to sort alternatives. We assume the DM has a linear value function and value thresholds for preference classes. Our method specifies an informative prior distribution on the uncertain parameters. At each stage of the process, we compare the expected cost of stopping with the expected cost of continuing to consult the DM. If it is optimal to continue, we select an alternative to present to the DM and, given the DM’s response, we update the prior distribution using Bayes’ Theorem. The goal of the algorithm is to minimize expected total cost. We develop lower bounds on the optimal cost and study the performance of a heuristic policy that presents the DM alternatives with the highest expected cost of misplacement. |
doi_str_mv | 10.1080/24725854.2023.2243615 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039634636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039634636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-3a715545d369cd153f6cf79c3de5c6ebf5450c5c30d11c1778bb29443978c9b33</originalsourceid><addsrcrecordid>eNo9kEtrwzAQhEVpoSHNTygIerYrabWSdUxDXxDopT0LW5aKgx-pZB_y72uTtKdZZoYd-Ai55yznrGCPQmqBBcpcMAG5EBIUxyuyWvwMCyWu_2-Ut2ST0oExxjUiU2ZFYEufypNPTdnTbqh9S8MQaTe1Y-NiM_rYlDQNcWz6b3qMQ9X6Lt2Rm1C2yW8uuiZfL8-fu7ds__H6vtvuMyeEGTMoNUeUWIMyruYIQbmgjYPao1O-CnPGHDpgNeeOa11UlTBSgtGFMxXAmjyc_87DP5NPoz0MU-znSQsMjAKpQM0tPLdcHFKKPthjbLoynixndkFk_xDZBZG9IIJfnHBXWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039634636</pqid></control><display><type>article</type><title>A Bayesian model for multicriteria sorting problems</title><source>Access via Taylor & Francis</source><source>Alma/SFX Local Collection</source><creator>Ulu, Canan ; Shively, Thomas S.</creator><creatorcontrib>Ulu, Canan ; Shively, Thomas S.</creatorcontrib><description>Decision makers are often interested in assigning alternatives to preference classes under multiple criteria instead of choosing the best alternative or ranking all the alternatives. Firms need to categorize suppliers based on performance, credit agencies need to classify customers according to their risks, and graduate programs need to decide who to admit. In this article, we develop an interactive Bayesian algorithm to aid a decision maker (DM) with a multicriteria sorting problem by learning about her preferences and using that knowledge to sort alternatives. We assume the DM has a linear value function and value thresholds for preference classes. Our method specifies an informative prior distribution on the uncertain parameters. At each stage of the process, we compare the expected cost of stopping with the expected cost of continuing to consult the DM. If it is optimal to continue, we select an alternative to present to the DM and, given the DM’s response, we update the prior distribution using Bayes’ Theorem. The goal of the algorithm is to minimize expected total cost. We develop lower bounds on the optimal cost and study the performance of a heuristic policy that presents the DM alternatives with the highest expected cost of misplacement.</description><identifier>ISSN: 2472-5854</identifier><identifier>EISSN: 2472-5862</identifier><identifier>DOI: 10.1080/24725854.2023.2243615</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis Ltd</publisher><subject>Alternatives ; Bayes Theorem ; Bayesian analysis ; Costs ; Decision making ; Lower bounds ; Multiple criterion ; Parameter uncertainty ; Preferences ; Sorting algorithms</subject><ispartof>IIE transactions, 2024-07, Vol.56 (7), p.777-791</ispartof><rights>Copyright © 2023 “IISE”</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c229t-3a715545d369cd153f6cf79c3de5c6ebf5450c5c30d11c1778bb29443978c9b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ulu, Canan</creatorcontrib><creatorcontrib>Shively, Thomas S.</creatorcontrib><title>A Bayesian model for multicriteria sorting problems</title><title>IIE transactions</title><description>Decision makers are often interested in assigning alternatives to preference classes under multiple criteria instead of choosing the best alternative or ranking all the alternatives. Firms need to categorize suppliers based on performance, credit agencies need to classify customers according to their risks, and graduate programs need to decide who to admit. In this article, we develop an interactive Bayesian algorithm to aid a decision maker (DM) with a multicriteria sorting problem by learning about her preferences and using that knowledge to sort alternatives. We assume the DM has a linear value function and value thresholds for preference classes. Our method specifies an informative prior distribution on the uncertain parameters. At each stage of the process, we compare the expected cost of stopping with the expected cost of continuing to consult the DM. If it is optimal to continue, we select an alternative to present to the DM and, given the DM’s response, we update the prior distribution using Bayes’ Theorem. The goal of the algorithm is to minimize expected total cost. We develop lower bounds on the optimal cost and study the performance of a heuristic policy that presents the DM alternatives with the highest expected cost of misplacement.</description><subject>Alternatives</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Costs</subject><subject>Decision making</subject><subject>Lower bounds</subject><subject>Multiple criterion</subject><subject>Parameter uncertainty</subject><subject>Preferences</subject><subject>Sorting algorithms</subject><issn>2472-5854</issn><issn>2472-5862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtrwzAQhEVpoSHNTygIerYrabWSdUxDXxDopT0LW5aKgx-pZB_y72uTtKdZZoYd-Ai55yznrGCPQmqBBcpcMAG5EBIUxyuyWvwMCyWu_2-Ut2ST0oExxjUiU2ZFYEufypNPTdnTbqh9S8MQaTe1Y-NiM_rYlDQNcWz6b3qMQ9X6Lt2Rm1C2yW8uuiZfL8-fu7ds__H6vtvuMyeEGTMoNUeUWIMyruYIQbmgjYPao1O-CnPGHDpgNeeOa11UlTBSgtGFMxXAmjyc_87DP5NPoz0MU-znSQsMjAKpQM0tPLdcHFKKPthjbLoynixndkFk_xDZBZG9IIJfnHBXWw</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Ulu, Canan</creator><creator>Shively, Thomas S.</creator><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20240702</creationdate><title>A Bayesian model for multicriteria sorting problems</title><author>Ulu, Canan ; Shively, Thomas S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-3a715545d369cd153f6cf79c3de5c6ebf5450c5c30d11c1778bb29443978c9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alternatives</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Costs</topic><topic>Decision making</topic><topic>Lower bounds</topic><topic>Multiple criterion</topic><topic>Parameter uncertainty</topic><topic>Preferences</topic><topic>Sorting algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulu, Canan</creatorcontrib><creatorcontrib>Shively, Thomas S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>IIE transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulu, Canan</au><au>Shively, Thomas S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian model for multicriteria sorting problems</atitle><jtitle>IIE transactions</jtitle><date>2024-07-02</date><risdate>2024</risdate><volume>56</volume><issue>7</issue><spage>777</spage><epage>791</epage><pages>777-791</pages><issn>2472-5854</issn><eissn>2472-5862</eissn><abstract>Decision makers are often interested in assigning alternatives to preference classes under multiple criteria instead of choosing the best alternative or ranking all the alternatives. Firms need to categorize suppliers based on performance, credit agencies need to classify customers according to their risks, and graduate programs need to decide who to admit. In this article, we develop an interactive Bayesian algorithm to aid a decision maker (DM) with a multicriteria sorting problem by learning about her preferences and using that knowledge to sort alternatives. We assume the DM has a linear value function and value thresholds for preference classes. Our method specifies an informative prior distribution on the uncertain parameters. At each stage of the process, we compare the expected cost of stopping with the expected cost of continuing to consult the DM. If it is optimal to continue, we select an alternative to present to the DM and, given the DM’s response, we update the prior distribution using Bayes’ Theorem. The goal of the algorithm is to minimize expected total cost. We develop lower bounds on the optimal cost and study the performance of a heuristic policy that presents the DM alternatives with the highest expected cost of misplacement.</abstract><cop>Abingdon</cop><pub>Taylor & Francis Ltd</pub><doi>10.1080/24725854.2023.2243615</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2472-5854 |
ispartof | IIE transactions, 2024-07, Vol.56 (7), p.777-791 |
issn | 2472-5854 2472-5862 |
language | eng |
recordid | cdi_proquest_journals_3039634636 |
source | Access via Taylor & Francis; Alma/SFX Local Collection |
subjects | Alternatives Bayes Theorem Bayesian analysis Costs Decision making Lower bounds Multiple criterion Parameter uncertainty Preferences Sorting algorithms |
title | A Bayesian model for multicriteria sorting problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20model%20for%20multicriteria%20sorting%20problems&rft.jtitle=IIE%20transactions&rft.au=Ulu,%20Canan&rft.date=2024-07-02&rft.volume=56&rft.issue=7&rft.spage=777&rft.epage=791&rft.pages=777-791&rft.issn=2472-5854&rft.eissn=2472-5862&rft_id=info:doi/10.1080/24725854.2023.2243615&rft_dat=%3Cproquest_cross%3E3039634636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039634636&rft_id=info:pmid/&rfr_iscdi=true |