Routing and Spectrum Allocation in Broadband Quantum Entanglement Distribution

We investigate resource allocation for quantum entanglement distribution over an optical network. We characterize and model a network architecture that employs a single quasi-deterministic time-frequency heralded Einstein-Podolsky-Rosen (EPR) pair source, and develop a routing scheme for distributin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Bali, Rohan, Tittelbaugh, Ashley N, Jenkins, Shelbi L, Agrawal, Anuj, Horgan, Jerry, Ruffini, Marco, Kilper, Daniel C, Bash, Boulat A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bali, Rohan
Tittelbaugh, Ashley N
Jenkins, Shelbi L
Agrawal, Anuj
Horgan, Jerry
Ruffini, Marco
Kilper, Daniel C
Bash, Boulat A
description We investigate resource allocation for quantum entanglement distribution over an optical network. We characterize and model a network architecture that employs a single quasi-deterministic time-frequency heralded Einstein-Podolsky-Rosen (EPR) pair source, and develop a routing scheme for distributing entangled photon pairs over such a network. We focus on max-min fairness in entanglement distribution and compare the performance of various spectrum allocation schemes by examining the max-min and median number of EPR-pairs assigned by them, and the Jain index associated with this assignment. Since this presents an NP-hard problem, we identify two approximation algorithms that outperform others in minimum and mean EPR-pair rate distribution and are comparable to others in the Jain index. We also analyze how the network size and connectivity affect these metrics using Watts-Strogatz random graphs. We find that a spectrum allocation approach that achieves high minimum EPR-pair rate can perform significantly worse when the median EPR-pair rate, Jain index, and runtimes are considered.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3039627583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039627583</sourcerecordid><originalsourceid>FETCH-proquest_journals_30396275833</originalsourceid><addsrcrecordid>eNqNyskKwjAUQNEgCBbtPwRcF2JiB5cOFVeCw76kbSwp6UtNXv7fCn6Aq7u4Z0YiLsQmKbacL0jsfc8Y41nO01RE5Hq3ATV0VEJLH6Nq0IWB7o2xjURtgWqgB2dlW3_BLUjA6ZeAEjqjBgVIT9qj03X48hWZv6TxKv51Sdbn8nm8JKOz76A8Vr0NDqZVCSZ2Gc_TQoj_1AcKzT7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039627583</pqid></control><display><type>article</type><title>Routing and Spectrum Allocation in Broadband Quantum Entanglement Distribution</title><source>Free E- Journals</source><creator>Bali, Rohan ; Tittelbaugh, Ashley N ; Jenkins, Shelbi L ; Agrawal, Anuj ; Horgan, Jerry ; Ruffini, Marco ; Kilper, Daniel C ; Bash, Boulat A</creator><creatorcontrib>Bali, Rohan ; Tittelbaugh, Ashley N ; Jenkins, Shelbi L ; Agrawal, Anuj ; Horgan, Jerry ; Ruffini, Marco ; Kilper, Daniel C ; Bash, Boulat A</creatorcontrib><description>We investigate resource allocation for quantum entanglement distribution over an optical network. We characterize and model a network architecture that employs a single quasi-deterministic time-frequency heralded Einstein-Podolsky-Rosen (EPR) pair source, and develop a routing scheme for distributing entangled photon pairs over such a network. We focus on max-min fairness in entanglement distribution and compare the performance of various spectrum allocation schemes by examining the max-min and median number of EPR-pairs assigned by them, and the Jain index associated with this assignment. Since this presents an NP-hard problem, we identify two approximation algorithms that outperform others in minimum and mean EPR-pair rate distribution and are comparable to others in the Jain index. We also analyze how the network size and connectivity affect these metrics using Watts-Strogatz random graphs. We find that a spectrum allocation approach that achieves high minimum EPR-pair rate can perform significantly worse when the median EPR-pair rate, Jain index, and runtimes are considered.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Broadband ; Optical communication ; Quantum entanglement ; Resource allocation ; Spectrum allocation</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Bali, Rohan</creatorcontrib><creatorcontrib>Tittelbaugh, Ashley N</creatorcontrib><creatorcontrib>Jenkins, Shelbi L</creatorcontrib><creatorcontrib>Agrawal, Anuj</creatorcontrib><creatorcontrib>Horgan, Jerry</creatorcontrib><creatorcontrib>Ruffini, Marco</creatorcontrib><creatorcontrib>Kilper, Daniel C</creatorcontrib><creatorcontrib>Bash, Boulat A</creatorcontrib><title>Routing and Spectrum Allocation in Broadband Quantum Entanglement Distribution</title><title>arXiv.org</title><description>We investigate resource allocation for quantum entanglement distribution over an optical network. We characterize and model a network architecture that employs a single quasi-deterministic time-frequency heralded Einstein-Podolsky-Rosen (EPR) pair source, and develop a routing scheme for distributing entangled photon pairs over such a network. We focus on max-min fairness in entanglement distribution and compare the performance of various spectrum allocation schemes by examining the max-min and median number of EPR-pairs assigned by them, and the Jain index associated with this assignment. Since this presents an NP-hard problem, we identify two approximation algorithms that outperform others in minimum and mean EPR-pair rate distribution and are comparable to others in the Jain index. We also analyze how the network size and connectivity affect these metrics using Watts-Strogatz random graphs. We find that a spectrum allocation approach that achieves high minimum EPR-pair rate can perform significantly worse when the median EPR-pair rate, Jain index, and runtimes are considered.</description><subject>Algorithms</subject><subject>Broadband</subject><subject>Optical communication</subject><subject>Quantum entanglement</subject><subject>Resource allocation</subject><subject>Spectrum allocation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyskKwjAUQNEgCBbtPwRcF2JiB5cOFVeCw76kbSwp6UtNXv7fCn6Aq7u4Z0YiLsQmKbacL0jsfc8Y41nO01RE5Hq3ATV0VEJLH6Nq0IWB7o2xjURtgWqgB2dlW3_BLUjA6ZeAEjqjBgVIT9qj03X48hWZv6TxKv51Sdbn8nm8JKOz76A8Vr0NDqZVCSZ2Gc_TQoj_1AcKzT7E</recordid><startdate>20240412</startdate><enddate>20240412</enddate><creator>Bali, Rohan</creator><creator>Tittelbaugh, Ashley N</creator><creator>Jenkins, Shelbi L</creator><creator>Agrawal, Anuj</creator><creator>Horgan, Jerry</creator><creator>Ruffini, Marco</creator><creator>Kilper, Daniel C</creator><creator>Bash, Boulat A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240412</creationdate><title>Routing and Spectrum Allocation in Broadband Quantum Entanglement Distribution</title><author>Bali, Rohan ; Tittelbaugh, Ashley N ; Jenkins, Shelbi L ; Agrawal, Anuj ; Horgan, Jerry ; Ruffini, Marco ; Kilper, Daniel C ; Bash, Boulat A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30396275833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Broadband</topic><topic>Optical communication</topic><topic>Quantum entanglement</topic><topic>Resource allocation</topic><topic>Spectrum allocation</topic><toplevel>online_resources</toplevel><creatorcontrib>Bali, Rohan</creatorcontrib><creatorcontrib>Tittelbaugh, Ashley N</creatorcontrib><creatorcontrib>Jenkins, Shelbi L</creatorcontrib><creatorcontrib>Agrawal, Anuj</creatorcontrib><creatorcontrib>Horgan, Jerry</creatorcontrib><creatorcontrib>Ruffini, Marco</creatorcontrib><creatorcontrib>Kilper, Daniel C</creatorcontrib><creatorcontrib>Bash, Boulat A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bali, Rohan</au><au>Tittelbaugh, Ashley N</au><au>Jenkins, Shelbi L</au><au>Agrawal, Anuj</au><au>Horgan, Jerry</au><au>Ruffini, Marco</au><au>Kilper, Daniel C</au><au>Bash, Boulat A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Routing and Spectrum Allocation in Broadband Quantum Entanglement Distribution</atitle><jtitle>arXiv.org</jtitle><date>2024-04-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We investigate resource allocation for quantum entanglement distribution over an optical network. We characterize and model a network architecture that employs a single quasi-deterministic time-frequency heralded Einstein-Podolsky-Rosen (EPR) pair source, and develop a routing scheme for distributing entangled photon pairs over such a network. We focus on max-min fairness in entanglement distribution and compare the performance of various spectrum allocation schemes by examining the max-min and median number of EPR-pairs assigned by them, and the Jain index associated with this assignment. Since this presents an NP-hard problem, we identify two approximation algorithms that outperform others in minimum and mean EPR-pair rate distribution and are comparable to others in the Jain index. We also analyze how the network size and connectivity affect these metrics using Watts-Strogatz random graphs. We find that a spectrum allocation approach that achieves high minimum EPR-pair rate can perform significantly worse when the median EPR-pair rate, Jain index, and runtimes are considered.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3039627583
source Free E- Journals
subjects Algorithms
Broadband
Optical communication
Quantum entanglement
Resource allocation
Spectrum allocation
title Routing and Spectrum Allocation in Broadband Quantum Entanglement Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Routing%20and%20Spectrum%20Allocation%20in%20Broadband%20Quantum%20Entanglement%20Distribution&rft.jtitle=arXiv.org&rft.au=Bali,%20Rohan&rft.date=2024-04-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3039627583%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039627583&rft_id=info:pmid/&rfr_iscdi=true