A method for calculating the energy transfer of a combined rotary shell with variable winding trajectory

This paper proposes a method for calculating and analyzing the energy transfer characteristic of an air spring (AS) with a precise transfer matrix by abstracting the AS as a combined rotary shell structure with a variable winding trajectory. A dynamic equilibrium equation is derived considering the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2024-04, Vol.139 (4), p.338, Article 338
Hauptverfasser: Cheng, Yuqiang, He, Lin, Shuai, Changgeng, Cai, Cunguang, Gao, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 338
container_title European physical journal plus
container_volume 139
creator Cheng, Yuqiang
He, Lin
Shuai, Changgeng
Cai, Cunguang
Gao, Hua
description This paper proposes a method for calculating and analyzing the energy transfer characteristic of an air spring (AS) with a precise transfer matrix by abstracting the AS as a combined rotary shell structure with a variable winding trajectory. A dynamic equilibrium equation is derived considering the shell pre-stress. The forced vibration control equation is constructed for the shell under external excitation. The vibration response of the shell is subsequently analyzed under the effect of concentrated force and generalized sound pressure. The continuous boundary condition of the fluid–solid coupling is then borrowed to solve the sound pressure coefficient and to obtain the vibro-acoustic dynamic responses of the shell. Thereafter, structural intensity and energy flow are introduced with an expression to calculate them for the AS. The path and characteristics of energy transfer in the AS are then analyzed. Finally, a test platform is established to compare the energy flow test results of the three prototypes to prove the effectiveness of the proposed method in support of the analysis.
doi_str_mv 10.1140/epjp/s13360-024-05100-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039627414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039627414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-be99634998bde5909f9193048b2728b72508720d5b8db89c1f33ff0dea11f7ba3</originalsourceid><addsrcrecordid>eNqFkE9rwzAMxcPYYKXrZ5hh56xy7DT2sZT9g8Iu29nYidwkpHFmuxv99kubwXabLpLgvSf0S5JbCveUclji0A7LQBlbQQoZTyGnAGlxkcwyKiHNOeeXf-brZBFCC2NxSbnks6Rekz3G2lXEOk9K3ZWHTsem35FYI8Ee_e5Iotd9sOiJs0ST0u1N02NFvIvaH0mosevIVxNr8ql9o02H49ZX5xCvWyyj88eb5MrqLuDip8-T98eHt81zun19etmst2mZCYipQSlXjEspTIW5BGkllQy4MFmRCVNkOYgigyo3ojJCltQyZi1UqCm1hdFsntxNuYN3HwcMUbXu4PvxpGLA5CorOOWjqphUpXcheLRq8M1-_EZRUCey6kRWTWTVSFadyapidIrJGUZHv0P_m_-f9RsqMoA9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039627414</pqid></control><display><type>article</type><title>A method for calculating the energy transfer of a combined rotary shell with variable winding trajectory</title><source>SpringerLink Journals</source><creator>Cheng, Yuqiang ; He, Lin ; Shuai, Changgeng ; Cai, Cunguang ; Gao, Hua</creator><creatorcontrib>Cheng, Yuqiang ; He, Lin ; Shuai, Changgeng ; Cai, Cunguang ; Gao, Hua</creatorcontrib><description>This paper proposes a method for calculating and analyzing the energy transfer characteristic of an air spring (AS) with a precise transfer matrix by abstracting the AS as a combined rotary shell structure with a variable winding trajectory. A dynamic equilibrium equation is derived considering the shell pre-stress. The forced vibration control equation is constructed for the shell under external excitation. The vibration response of the shell is subsequently analyzed under the effect of concentrated force and generalized sound pressure. The continuous boundary condition of the fluid–solid coupling is then borrowed to solve the sound pressure coefficient and to obtain the vibro-acoustic dynamic responses of the shell. Thereafter, structural intensity and energy flow are introduced with an expression to calculate them for the AS. The path and characteristics of energy transfer in the AS are then analyzed. Finally, a test platform is established to compare the energy flow test results of the three prototypes to prove the effectiveness of the proposed method in support of the analysis.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-024-05100-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Air springs ; Applied and Technical Physics ; Atomic ; Boundary conditions ; Complex Systems ; Composite materials ; Condensed Matter Physics ; Deformation ; Energy ; Energy flow ; Energy transfer ; Equilibrium equations ; Finite element analysis ; Forced vibration ; Mathematical analysis ; Mathematical and Computational Physics ; Methods ; Molecular ; Numerical analysis ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Shells (structural forms) ; Sound pressure ; Theoretical ; Transfer matrices ; Vibration analysis ; Vibration control ; Vibration response ; Winding</subject><ispartof>European physical journal plus, 2024-04, Vol.139 (4), p.338, Article 338</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-be99634998bde5909f9193048b2728b72508720d5b8db89c1f33ff0dea11f7ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-024-05100-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjp/s13360-024-05100-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cheng, Yuqiang</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><creatorcontrib>Shuai, Changgeng</creatorcontrib><creatorcontrib>Cai, Cunguang</creatorcontrib><creatorcontrib>Gao, Hua</creatorcontrib><title>A method for calculating the energy transfer of a combined rotary shell with variable winding trajectory</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>This paper proposes a method for calculating and analyzing the energy transfer characteristic of an air spring (AS) with a precise transfer matrix by abstracting the AS as a combined rotary shell structure with a variable winding trajectory. A dynamic equilibrium equation is derived considering the shell pre-stress. The forced vibration control equation is constructed for the shell under external excitation. The vibration response of the shell is subsequently analyzed under the effect of concentrated force and generalized sound pressure. The continuous boundary condition of the fluid–solid coupling is then borrowed to solve the sound pressure coefficient and to obtain the vibro-acoustic dynamic responses of the shell. Thereafter, structural intensity and energy flow are introduced with an expression to calculate them for the AS. The path and characteristics of energy transfer in the AS are then analyzed. Finally, a test platform is established to compare the energy flow test results of the three prototypes to prove the effectiveness of the proposed method in support of the analysis.</description><subject>Air springs</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Boundary conditions</subject><subject>Complex Systems</subject><subject>Composite materials</subject><subject>Condensed Matter Physics</subject><subject>Deformation</subject><subject>Energy</subject><subject>Energy flow</subject><subject>Energy transfer</subject><subject>Equilibrium equations</subject><subject>Finite element analysis</subject><subject>Forced vibration</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Methods</subject><subject>Molecular</subject><subject>Numerical analysis</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Shells (structural forms)</subject><subject>Sound pressure</subject><subject>Theoretical</subject><subject>Transfer matrices</subject><subject>Vibration analysis</subject><subject>Vibration control</subject><subject>Vibration response</subject><subject>Winding</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE9rwzAMxcPYYKXrZ5hh56xy7DT2sZT9g8Iu29nYidwkpHFmuxv99kubwXabLpLgvSf0S5JbCveUclji0A7LQBlbQQoZTyGnAGlxkcwyKiHNOeeXf-brZBFCC2NxSbnks6Rekz3G2lXEOk9K3ZWHTsem35FYI8Ee_e5Iotd9sOiJs0ST0u1N02NFvIvaH0mosevIVxNr8ql9o02H49ZX5xCvWyyj88eb5MrqLuDip8-T98eHt81zun19etmst2mZCYipQSlXjEspTIW5BGkllQy4MFmRCVNkOYgigyo3ojJCltQyZi1UqCm1hdFsntxNuYN3HwcMUbXu4PvxpGLA5CorOOWjqphUpXcheLRq8M1-_EZRUCey6kRWTWTVSFadyapidIrJGUZHv0P_m_-f9RsqMoA9</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Cheng, Yuqiang</creator><creator>He, Lin</creator><creator>Shuai, Changgeng</creator><creator>Cai, Cunguang</creator><creator>Gao, Hua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240417</creationdate><title>A method for calculating the energy transfer of a combined rotary shell with variable winding trajectory</title><author>Cheng, Yuqiang ; He, Lin ; Shuai, Changgeng ; Cai, Cunguang ; Gao, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-be99634998bde5909f9193048b2728b72508720d5b8db89c1f33ff0dea11f7ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air springs</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Boundary conditions</topic><topic>Complex Systems</topic><topic>Composite materials</topic><topic>Condensed Matter Physics</topic><topic>Deformation</topic><topic>Energy</topic><topic>Energy flow</topic><topic>Energy transfer</topic><topic>Equilibrium equations</topic><topic>Finite element analysis</topic><topic>Forced vibration</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Methods</topic><topic>Molecular</topic><topic>Numerical analysis</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Shells (structural forms)</topic><topic>Sound pressure</topic><topic>Theoretical</topic><topic>Transfer matrices</topic><topic>Vibration analysis</topic><topic>Vibration control</topic><topic>Vibration response</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yuqiang</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><creatorcontrib>Shuai, Changgeng</creatorcontrib><creatorcontrib>Cai, Cunguang</creatorcontrib><creatorcontrib>Gao, Hua</creatorcontrib><collection>CrossRef</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yuqiang</au><au>He, Lin</au><au>Shuai, Changgeng</au><au>Cai, Cunguang</au><au>Gao, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for calculating the energy transfer of a combined rotary shell with variable winding trajectory</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2024-04-17</date><risdate>2024</risdate><volume>139</volume><issue>4</issue><spage>338</spage><pages>338-</pages><artnum>338</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>This paper proposes a method for calculating and analyzing the energy transfer characteristic of an air spring (AS) with a precise transfer matrix by abstracting the AS as a combined rotary shell structure with a variable winding trajectory. A dynamic equilibrium equation is derived considering the shell pre-stress. The forced vibration control equation is constructed for the shell under external excitation. The vibration response of the shell is subsequently analyzed under the effect of concentrated force and generalized sound pressure. The continuous boundary condition of the fluid–solid coupling is then borrowed to solve the sound pressure coefficient and to obtain the vibro-acoustic dynamic responses of the shell. Thereafter, structural intensity and energy flow are introduced with an expression to calculate them for the AS. The path and characteristics of energy transfer in the AS are then analyzed. Finally, a test platform is established to compare the energy flow test results of the three prototypes to prove the effectiveness of the proposed method in support of the analysis.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-024-05100-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2024-04, Vol.139 (4), p.338, Article 338
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_3039627414
source SpringerLink Journals
subjects Air springs
Applied and Technical Physics
Atomic
Boundary conditions
Complex Systems
Composite materials
Condensed Matter Physics
Deformation
Energy
Energy flow
Energy transfer
Equilibrium equations
Finite element analysis
Forced vibration
Mathematical analysis
Mathematical and Computational Physics
Methods
Molecular
Numerical analysis
Optical and Plasma Physics
Physics
Physics and Astronomy
Regular Article
Shells (structural forms)
Sound pressure
Theoretical
Transfer matrices
Vibration analysis
Vibration control
Vibration response
Winding
title A method for calculating the energy transfer of a combined rotary shell with variable winding trajectory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20calculating%20the%20energy%20transfer%20of%20a%20combined%20rotary%20shell%20with%20variable%20winding%20trajectory&rft.jtitle=European%20physical%20journal%20plus&rft.au=Cheng,%20Yuqiang&rft.date=2024-04-17&rft.volume=139&rft.issue=4&rft.spage=338&rft.pages=338-&rft.artnum=338&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-024-05100-7&rft_dat=%3Cproquest_cross%3E3039627414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039627414&rft_id=info:pmid/&rfr_iscdi=true