Applying an electrostatic cross-correlation to the CFTR-ATP interaction

The cystic fibrosis transmembrane conductance regulator (CFTR) is an important membrane protein in vertebrates. The function of CFTR is to transport chloride ions across the cell membrane, which is known to require adenosine triphosphate (ATP). Whereas most conventional wisdom suggests that ATP inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Saad-Falcon, Alex, Bolding, Mark, Dee, James, Westafer, Ryan S, Denison, Douglas R, McCarty, Nael, Hunt, William D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Saad-Falcon, Alex
Bolding, Mark
Dee, James
Westafer, Ryan S
Denison, Douglas R
McCarty, Nael
Hunt, William D
description The cystic fibrosis transmembrane conductance regulator (CFTR) is an important membrane protein in vertebrates. The function of CFTR is to transport chloride ions across the cell membrane, which is known to require adenosine triphosphate (ATP). Whereas most conventional wisdom suggests that ATP interacts with CFTR purely through random collisions via diffusion, we investigate electrostatic interactions between CFTR and ATP at the mesoscale (10s of Angstroms). We use molecular dynamics to simulate CFTR-ATP interactions in cases where CFTR is bound/unbound from ATP, and we demonstrate an electrostatic potential gradient towards CFTR when ATP is unbound. We additionally compute electrostatic interactions between ATP and the solvent and membrane, which are simulated explicitly.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3039627278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039627278</sourcerecordid><originalsourceid>FETCH-proquest_journals_30396272783</originalsourceid><addsrcrecordid>eNqNissKwjAQRYMgWLT_EHAdiJO-XJZidSnSfQlh1JaQ1GS68O-t4Ae4uodz7ooloNRBVBnAhqUxjlJKKErIc5Wwcz1N9j24B9eOo0VDwUfSNBhuForC-BDQLsI7Tp7TE3nTdjdRd1c-OMKgzbft2PqubcT0t1u2b09dcxFT8K8ZI_Wjn4NbUq-kOhZQQlmp_14fAjM7kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039627278</pqid></control><display><type>article</type><title>Applying an electrostatic cross-correlation to the CFTR-ATP interaction</title><source>Free E- Journals</source><creator>Saad-Falcon, Alex ; Bolding, Mark ; Dee, James ; Westafer, Ryan S ; Denison, Douglas R ; McCarty, Nael ; Hunt, William D</creator><creatorcontrib>Saad-Falcon, Alex ; Bolding, Mark ; Dee, James ; Westafer, Ryan S ; Denison, Douglas R ; McCarty, Nael ; Hunt, William D</creatorcontrib><description>The cystic fibrosis transmembrane conductance regulator (CFTR) is an important membrane protein in vertebrates. The function of CFTR is to transport chloride ions across the cell membrane, which is known to require adenosine triphosphate (ATP). Whereas most conventional wisdom suggests that ATP interacts with CFTR purely through random collisions via diffusion, we investigate electrostatic interactions between CFTR and ATP at the mesoscale (10s of Angstroms). We use molecular dynamics to simulate CFTR-ATP interactions in cases where CFTR is bound/unbound from ATP, and we demonstrate an electrostatic potential gradient towards CFTR when ATP is unbound. We additionally compute electrostatic interactions between ATP and the solvent and membrane, which are simulated explicitly.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adenosine triphosphate ; Cell membranes ; Chloride ions ; Cross correlation ; Cystic fibrosis ; Molecular dynamics ; Potential gradient ; Vertebrates</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Saad-Falcon, Alex</creatorcontrib><creatorcontrib>Bolding, Mark</creatorcontrib><creatorcontrib>Dee, James</creatorcontrib><creatorcontrib>Westafer, Ryan S</creatorcontrib><creatorcontrib>Denison, Douglas R</creatorcontrib><creatorcontrib>McCarty, Nael</creatorcontrib><creatorcontrib>Hunt, William D</creatorcontrib><title>Applying an electrostatic cross-correlation to the CFTR-ATP interaction</title><title>arXiv.org</title><description>The cystic fibrosis transmembrane conductance regulator (CFTR) is an important membrane protein in vertebrates. The function of CFTR is to transport chloride ions across the cell membrane, which is known to require adenosine triphosphate (ATP). Whereas most conventional wisdom suggests that ATP interacts with CFTR purely through random collisions via diffusion, we investigate electrostatic interactions between CFTR and ATP at the mesoscale (10s of Angstroms). We use molecular dynamics to simulate CFTR-ATP interactions in cases where CFTR is bound/unbound from ATP, and we demonstrate an electrostatic potential gradient towards CFTR when ATP is unbound. We additionally compute electrostatic interactions between ATP and the solvent and membrane, which are simulated explicitly.</description><subject>Adenosine triphosphate</subject><subject>Cell membranes</subject><subject>Chloride ions</subject><subject>Cross correlation</subject><subject>Cystic fibrosis</subject><subject>Molecular dynamics</subject><subject>Potential gradient</subject><subject>Vertebrates</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAQRYMgWLT_EHAdiJO-XJZidSnSfQlh1JaQ1GS68O-t4Ae4uodz7ooloNRBVBnAhqUxjlJKKErIc5Wwcz1N9j24B9eOo0VDwUfSNBhuForC-BDQLsI7Tp7TE3nTdjdRd1c-OMKgzbft2PqubcT0t1u2b09dcxFT8K8ZI_Wjn4NbUq-kOhZQQlmp_14fAjM7kQ</recordid><startdate>20240414</startdate><enddate>20240414</enddate><creator>Saad-Falcon, Alex</creator><creator>Bolding, Mark</creator><creator>Dee, James</creator><creator>Westafer, Ryan S</creator><creator>Denison, Douglas R</creator><creator>McCarty, Nael</creator><creator>Hunt, William D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240414</creationdate><title>Applying an electrostatic cross-correlation to the CFTR-ATP interaction</title><author>Saad-Falcon, Alex ; Bolding, Mark ; Dee, James ; Westafer, Ryan S ; Denison, Douglas R ; McCarty, Nael ; Hunt, William D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30396272783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adenosine triphosphate</topic><topic>Cell membranes</topic><topic>Chloride ions</topic><topic>Cross correlation</topic><topic>Cystic fibrosis</topic><topic>Molecular dynamics</topic><topic>Potential gradient</topic><topic>Vertebrates</topic><toplevel>online_resources</toplevel><creatorcontrib>Saad-Falcon, Alex</creatorcontrib><creatorcontrib>Bolding, Mark</creatorcontrib><creatorcontrib>Dee, James</creatorcontrib><creatorcontrib>Westafer, Ryan S</creatorcontrib><creatorcontrib>Denison, Douglas R</creatorcontrib><creatorcontrib>McCarty, Nael</creatorcontrib><creatorcontrib>Hunt, William D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saad-Falcon, Alex</au><au>Bolding, Mark</au><au>Dee, James</au><au>Westafer, Ryan S</au><au>Denison, Douglas R</au><au>McCarty, Nael</au><au>Hunt, William D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Applying an electrostatic cross-correlation to the CFTR-ATP interaction</atitle><jtitle>arXiv.org</jtitle><date>2024-04-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The cystic fibrosis transmembrane conductance regulator (CFTR) is an important membrane protein in vertebrates. The function of CFTR is to transport chloride ions across the cell membrane, which is known to require adenosine triphosphate (ATP). Whereas most conventional wisdom suggests that ATP interacts with CFTR purely through random collisions via diffusion, we investigate electrostatic interactions between CFTR and ATP at the mesoscale (10s of Angstroms). We use molecular dynamics to simulate CFTR-ATP interactions in cases where CFTR is bound/unbound from ATP, and we demonstrate an electrostatic potential gradient towards CFTR when ATP is unbound. We additionally compute electrostatic interactions between ATP and the solvent and membrane, which are simulated explicitly.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3039627278
source Free E- Journals
subjects Adenosine triphosphate
Cell membranes
Chloride ions
Cross correlation
Cystic fibrosis
Molecular dynamics
Potential gradient
Vertebrates
title Applying an electrostatic cross-correlation to the CFTR-ATP interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Applying%20an%20electrostatic%20cross-correlation%20to%20the%20CFTR-ATP%20interaction&rft.jtitle=arXiv.org&rft.au=Saad-Falcon,%20Alex&rft.date=2024-04-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3039627278%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039627278&rft_id=info:pmid/&rfr_iscdi=true