MAM-STM: A software for autonomous control of single moieties towards specific surface positions
In this publication we introduce MAM-STM, a software to autonomously manipulate arbitrary moieties towards specific positions on a metal surface utilizing the tip of a scanning tunneling microscope (STM). Finding the optimal manipulation parameters for a specific moiety is challenging and time consu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ramsauer, Bernhard Cartus, Johannes J Hofmann, Oliver T |
description | In this publication we introduce MAM-STM, a software to autonomously manipulate arbitrary moieties towards specific positions on a metal surface utilizing the tip of a scanning tunneling microscope (STM). Finding the optimal manipulation parameters for a specific moiety is challenging and time consuming, even for human experts. MAM-STM combines autonomous data acquisition with a sophisticated Q-learning implementation to determine the optimal bias voltage, the z-approach distance, and the tip position relative to the moiety. This then allows to arrange single molecules and atoms at will. In this work, we provide a tutorial based on a simulated response to offer a comprehensive explanation on how to use and customize MAM-STM. Additionally, we assess the performance of the machine learning algorithm by benchmarking it within a simulated stochastic environment. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3039625049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039625049</sourcerecordid><originalsourceid>FETCH-proquest_journals_30396250493</originalsourceid><addsrcrecordid>eNqNi7EKwjAUAIMgWLT_8MC5EJO2Wrciiksnu2uoiaS0eTUvwd-3gx_gdMPdLVgipNxlh1yIFUuJes65KPeiKGTCHk3dZLe2OUINhCZ8lNdg0IOKAR2OGAk6dMHjAGiArHsNGka0OlhNEHAengQ06c4a2wFFb1SnYUKywaKjDVsaNZBOf1yz7eXcnq7Z5PEdNYV7j9G7Wd0ll1UpCp5X8r_qC8MpRQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039625049</pqid></control><display><type>article</type><title>MAM-STM: A software for autonomous control of single moieties towards specific surface positions</title><source>Free E- Journals</source><creator>Ramsauer, Bernhard ; Cartus, Johannes J ; Hofmann, Oliver T</creator><creatorcontrib>Ramsauer, Bernhard ; Cartus, Johannes J ; Hofmann, Oliver T</creatorcontrib><description>In this publication we introduce MAM-STM, a software to autonomously manipulate arbitrary moieties towards specific positions on a metal surface utilizing the tip of a scanning tunneling microscope (STM). Finding the optimal manipulation parameters for a specific moiety is challenging and time consuming, even for human experts. MAM-STM combines autonomous data acquisition with a sophisticated Q-learning implementation to determine the optimal bias voltage, the z-approach distance, and the tip position relative to the moiety. This then allows to arrange single molecules and atoms at will. In this work, we provide a tutorial based on a simulated response to offer a comprehensive explanation on how to use and customize MAM-STM. Additionally, we assess the performance of the machine learning algorithm by benchmarking it within a simulated stochastic environment.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Data acquisition ; Machine learning ; Metal surfaces ; Scanning tunneling microscopy ; Software</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ramsauer, Bernhard</creatorcontrib><creatorcontrib>Cartus, Johannes J</creatorcontrib><creatorcontrib>Hofmann, Oliver T</creatorcontrib><title>MAM-STM: A software for autonomous control of single moieties towards specific surface positions</title><title>arXiv.org</title><description>In this publication we introduce MAM-STM, a software to autonomously manipulate arbitrary moieties towards specific positions on a metal surface utilizing the tip of a scanning tunneling microscope (STM). Finding the optimal manipulation parameters for a specific moiety is challenging and time consuming, even for human experts. MAM-STM combines autonomous data acquisition with a sophisticated Q-learning implementation to determine the optimal bias voltage, the z-approach distance, and the tip position relative to the moiety. This then allows to arrange single molecules and atoms at will. In this work, we provide a tutorial based on a simulated response to offer a comprehensive explanation on how to use and customize MAM-STM. Additionally, we assess the performance of the machine learning algorithm by benchmarking it within a simulated stochastic environment.</description><subject>Algorithms</subject><subject>Data acquisition</subject><subject>Machine learning</subject><subject>Metal surfaces</subject><subject>Scanning tunneling microscopy</subject><subject>Software</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7EKwjAUAIMgWLT_8MC5EJO2Wrciiksnu2uoiaS0eTUvwd-3gx_gdMPdLVgipNxlh1yIFUuJes65KPeiKGTCHk3dZLe2OUINhCZ8lNdg0IOKAR2OGAk6dMHjAGiArHsNGka0OlhNEHAengQ06c4a2wFFb1SnYUKywaKjDVsaNZBOf1yz7eXcnq7Z5PEdNYV7j9G7Wd0ll1UpCp5X8r_qC8MpRQw</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Ramsauer, Bernhard</creator><creator>Cartus, Johannes J</creator><creator>Hofmann, Oliver T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240415</creationdate><title>MAM-STM: A software for autonomous control of single moieties towards specific surface positions</title><author>Ramsauer, Bernhard ; Cartus, Johannes J ; Hofmann, Oliver T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30396250493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Data acquisition</topic><topic>Machine learning</topic><topic>Metal surfaces</topic><topic>Scanning tunneling microscopy</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Ramsauer, Bernhard</creatorcontrib><creatorcontrib>Cartus, Johannes J</creatorcontrib><creatorcontrib>Hofmann, Oliver T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramsauer, Bernhard</au><au>Cartus, Johannes J</au><au>Hofmann, Oliver T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MAM-STM: A software for autonomous control of single moieties towards specific surface positions</atitle><jtitle>arXiv.org</jtitle><date>2024-04-15</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this publication we introduce MAM-STM, a software to autonomously manipulate arbitrary moieties towards specific positions on a metal surface utilizing the tip of a scanning tunneling microscope (STM). Finding the optimal manipulation parameters for a specific moiety is challenging and time consuming, even for human experts. MAM-STM combines autonomous data acquisition with a sophisticated Q-learning implementation to determine the optimal bias voltage, the z-approach distance, and the tip position relative to the moiety. This then allows to arrange single molecules and atoms at will. In this work, we provide a tutorial based on a simulated response to offer a comprehensive explanation on how to use and customize MAM-STM. Additionally, we assess the performance of the machine learning algorithm by benchmarking it within a simulated stochastic environment.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3039625049 |
source | Free E- Journals |
subjects | Algorithms Data acquisition Machine learning Metal surfaces Scanning tunneling microscopy Software |
title | MAM-STM: A software for autonomous control of single moieties towards specific surface positions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MAM-STM:%20A%20software%20for%20autonomous%20control%20of%20single%20moieties%20towards%20specific%20surface%20positions&rft.jtitle=arXiv.org&rft.au=Ramsauer,%20Bernhard&rft.date=2024-04-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3039625049%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039625049&rft_id=info:pmid/&rfr_iscdi=true |