What factors contribute to uneven suburbanisation? Predicting the number of migrants from Warsaw to its suburbs with machine learning

This article investigates the spatially uneven migration from Warsaw to its suburban municipalities. We report a novel approach to modelling suburbanisation: several linear and nonlinear predictive models are applied, and Explainable Artificial Intelligence methods are used to interpret the shape of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of regional science 2024-04, Vol.72 (4), p.1353-1382
Hauptverfasser: Bogusz, Honorata, Winnicki, Szymon, Wójcik, Piotr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1382
container_issue 4
container_start_page 1353
container_title The Annals of regional science
container_volume 72
creator Bogusz, Honorata
Winnicki, Szymon
Wójcik, Piotr
description This article investigates the spatially uneven migration from Warsaw to its suburban municipalities. We report a novel approach to modelling suburbanisation: several linear and nonlinear predictive models are applied, and Explainable Artificial Intelligence methods are used to interpret the shape of relationships between the dependent variable and the most important regressors. The support vector regression algorithm is found to yield the most accurate predictions of the number of migrants to the suburbs of Warsaw. In addition, we find that migrants choose wealthier and more urbanised municipalities that offer better institutional amenities and a shorter driving time to Warsaw’s city centre.
doi_str_mv 10.1007/s00168-023-01245-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039610552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039610552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-ffd9660eb2f9e29a2231f1e45ffb688598446a2427cca1b322b5be70231ad0ae3</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOD5-wFXAdWvl0T3dKxHxBQO6UFyGpKcyE7ETTdLKfID_bbQFd64Kqu49BYeQIwYnDGB-mgBY01bARQWMy7rabJEZk4JXUHd8m8ygnkPF2kbukr2UnqGUBGMz8vm01pla3ecQE-2Dz9GZMSPNgY4e39HTNJoxGu1d0tkFf0bvIy5dn51f0bxG6sfBYKTB0sGtovY5URvDQJ90TPrjG-TKaqIk-uHymg66XzuP9AV19IVzQHasfkl4-Dv3yePV5cPFTbW4u769OF9UvQSZK2uXXdMAGm475J3mXDDLUNbWmqZt666VstFc8nnfa2YE56Y2OC9WmF6CRrFPjifuawxvI6asnsMYfXmpBIiuYVDXvKT4lOpjSCmiVa_RDTpuFAP1rVtNulUBqx_dalNKdCphkejSX6XtuJAtl6xExBRJ5ehXGP--_wP-ArkdkIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039610552</pqid></control><display><type>article</type><title>What factors contribute to uneven suburbanisation? Predicting the number of migrants from Warsaw to its suburbs with machine learning</title><source>PAIS Index</source><source>SpringerNature Journals</source><creator>Bogusz, Honorata ; Winnicki, Szymon ; Wójcik, Piotr</creator><creatorcontrib>Bogusz, Honorata ; Winnicki, Szymon ; Wójcik, Piotr</creatorcontrib><description>This article investigates the spatially uneven migration from Warsaw to its suburban municipalities. We report a novel approach to modelling suburbanisation: several linear and nonlinear predictive models are applied, and Explainable Artificial Intelligence methods are used to interpret the shape of relationships between the dependent variable and the most important regressors. The support vector regression algorithm is found to yield the most accurate predictions of the number of migrants to the suburbs of Warsaw. In addition, we find that migrants choose wealthier and more urbanised municipalities that offer better institutional amenities and a shorter driving time to Warsaw’s city centre.</description><identifier>ISSN: 0570-1864</identifier><identifier>EISSN: 1432-0592</identifier><identifier>DOI: 10.1007/s00168-023-01245-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial intelligence ; Cities ; City centres ; Communism ; Dependent variables ; Economics ; Economics and Finance ; Energy consumption ; Environmental Economics ; Explainable artificial intelligence ; Geography ; Künstliche Intelligenz ; Landscape/Regional and Urban Planning ; Machine learning ; Microeconomics ; Migrants ; Migration ; Municipalities ; Original Paper ; Polen ; Prediction models ; Prognoseverfahren ; Regional/Spatial Science ; Suburban areas ; Suburbanisierung ; Suburbanization ; Suburbs ; Support vector machines ; Urban areas ; Urbanization ; Warschau</subject><ispartof>The Annals of regional science, 2024-04, Vol.72 (4), p.1353-1382</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-ffd9660eb2f9e29a2231f1e45ffb688598446a2427cca1b322b5be70231ad0ae3</cites><orcidid>0000-0002-7089-4893 ; 0000-0003-1853-8784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00168-023-01245-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00168-023-01245-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27866,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bogusz, Honorata</creatorcontrib><creatorcontrib>Winnicki, Szymon</creatorcontrib><creatorcontrib>Wójcik, Piotr</creatorcontrib><title>What factors contribute to uneven suburbanisation? Predicting the number of migrants from Warsaw to its suburbs with machine learning</title><title>The Annals of regional science</title><addtitle>Ann Reg Sci</addtitle><description>This article investigates the spatially uneven migration from Warsaw to its suburban municipalities. We report a novel approach to modelling suburbanisation: several linear and nonlinear predictive models are applied, and Explainable Artificial Intelligence methods are used to interpret the shape of relationships between the dependent variable and the most important regressors. The support vector regression algorithm is found to yield the most accurate predictions of the number of migrants to the suburbs of Warsaw. In addition, we find that migrants choose wealthier and more urbanised municipalities that offer better institutional amenities and a shorter driving time to Warsaw’s city centre.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cities</subject><subject>City centres</subject><subject>Communism</subject><subject>Dependent variables</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Energy consumption</subject><subject>Environmental Economics</subject><subject>Explainable artificial intelligence</subject><subject>Geography</subject><subject>Künstliche Intelligenz</subject><subject>Landscape/Regional and Urban Planning</subject><subject>Machine learning</subject><subject>Microeconomics</subject><subject>Migrants</subject><subject>Migration</subject><subject>Municipalities</subject><subject>Original Paper</subject><subject>Polen</subject><subject>Prediction models</subject><subject>Prognoseverfahren</subject><subject>Regional/Spatial Science</subject><subject>Suburban areas</subject><subject>Suburbanisierung</subject><subject>Suburbanization</subject><subject>Suburbs</subject><subject>Support vector machines</subject><subject>Urban areas</subject><subject>Urbanization</subject><subject>Warschau</subject><issn>0570-1864</issn><issn>1432-0592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>7TQ</sourceid><recordid>eNp9kMtKBDEQRYMoOD5-wFXAdWvl0T3dKxHxBQO6UFyGpKcyE7ETTdLKfID_bbQFd64Kqu49BYeQIwYnDGB-mgBY01bARQWMy7rabJEZk4JXUHd8m8ygnkPF2kbukr2UnqGUBGMz8vm01pla3ecQE-2Dz9GZMSPNgY4e39HTNJoxGu1d0tkFf0bvIy5dn51f0bxG6sfBYKTB0sGtovY5URvDQJ90TPrjG-TKaqIk-uHymg66XzuP9AV19IVzQHasfkl4-Dv3yePV5cPFTbW4u769OF9UvQSZK2uXXdMAGm475J3mXDDLUNbWmqZt666VstFc8nnfa2YE56Y2OC9WmF6CRrFPjifuawxvI6asnsMYfXmpBIiuYVDXvKT4lOpjSCmiVa_RDTpuFAP1rVtNulUBqx_dalNKdCphkejSX6XtuJAtl6xExBRJ5ehXGP--_wP-ArkdkIY</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Bogusz, Honorata</creator><creator>Winnicki, Szymon</creator><creator>Wójcik, Piotr</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TQ</scope><scope>8BJ</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-7089-4893</orcidid><orcidid>https://orcid.org/0000-0003-1853-8784</orcidid></search><sort><creationdate>20240401</creationdate><title>What factors contribute to uneven suburbanisation? Predicting the number of migrants from Warsaw to its suburbs with machine learning</title><author>Bogusz, Honorata ; Winnicki, Szymon ; Wójcik, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-ffd9660eb2f9e29a2231f1e45ffb688598446a2427cca1b322b5be70231ad0ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cities</topic><topic>City centres</topic><topic>Communism</topic><topic>Dependent variables</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Energy consumption</topic><topic>Environmental Economics</topic><topic>Explainable artificial intelligence</topic><topic>Geography</topic><topic>Künstliche Intelligenz</topic><topic>Landscape/Regional and Urban Planning</topic><topic>Machine learning</topic><topic>Microeconomics</topic><topic>Migrants</topic><topic>Migration</topic><topic>Municipalities</topic><topic>Original Paper</topic><topic>Polen</topic><topic>Prediction models</topic><topic>Prognoseverfahren</topic><topic>Regional/Spatial Science</topic><topic>Suburban areas</topic><topic>Suburbanisierung</topic><topic>Suburbanization</topic><topic>Suburbs</topic><topic>Support vector machines</topic><topic>Urban areas</topic><topic>Urbanization</topic><topic>Warschau</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogusz, Honorata</creatorcontrib><creatorcontrib>Winnicki, Szymon</creatorcontrib><creatorcontrib>Wójcik, Piotr</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Annals of regional science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogusz, Honorata</au><au>Winnicki, Szymon</au><au>Wójcik, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What factors contribute to uneven suburbanisation? Predicting the number of migrants from Warsaw to its suburbs with machine learning</atitle><jtitle>The Annals of regional science</jtitle><stitle>Ann Reg Sci</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>72</volume><issue>4</issue><spage>1353</spage><epage>1382</epage><pages>1353-1382</pages><issn>0570-1864</issn><eissn>1432-0592</eissn><abstract>This article investigates the spatially uneven migration from Warsaw to its suburban municipalities. We report a novel approach to modelling suburbanisation: several linear and nonlinear predictive models are applied, and Explainable Artificial Intelligence methods are used to interpret the shape of relationships between the dependent variable and the most important regressors. The support vector regression algorithm is found to yield the most accurate predictions of the number of migrants to the suburbs of Warsaw. In addition, we find that migrants choose wealthier and more urbanised municipalities that offer better institutional amenities and a shorter driving time to Warsaw’s city centre.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00168-023-01245-y</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-7089-4893</orcidid><orcidid>https://orcid.org/0000-0003-1853-8784</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0570-1864
ispartof The Annals of regional science, 2024-04, Vol.72 (4), p.1353-1382
issn 0570-1864
1432-0592
language eng
recordid cdi_proquest_journals_3039610552
source PAIS Index; SpringerNature Journals
subjects Algorithms
Artificial intelligence
Cities
City centres
Communism
Dependent variables
Economics
Economics and Finance
Energy consumption
Environmental Economics
Explainable artificial intelligence
Geography
Künstliche Intelligenz
Landscape/Regional and Urban Planning
Machine learning
Microeconomics
Migrants
Migration
Municipalities
Original Paper
Polen
Prediction models
Prognoseverfahren
Regional/Spatial Science
Suburban areas
Suburbanisierung
Suburbanization
Suburbs
Support vector machines
Urban areas
Urbanization
Warschau
title What factors contribute to uneven suburbanisation? Predicting the number of migrants from Warsaw to its suburbs with machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20factors%20contribute%20to%20uneven%20suburbanisation?%20Predicting%20the%20number%20of%20migrants%20from%20Warsaw%20to%20its%20suburbs%20with%20machine%20learning&rft.jtitle=The%20Annals%20of%20regional%20science&rft.au=Bogusz,%20Honorata&rft.date=2024-04-01&rft.volume=72&rft.issue=4&rft.spage=1353&rft.epage=1382&rft.pages=1353-1382&rft.issn=0570-1864&rft.eissn=1432-0592&rft_id=info:doi/10.1007/s00168-023-01245-y&rft_dat=%3Cproquest_cross%3E3039610552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039610552&rft_id=info:pmid/&rfr_iscdi=true