What factors contribute to uneven suburbanisation? Predicting the number of migrants from Warsaw to its suburbs with machine learning
This article investigates the spatially uneven migration from Warsaw to its suburban municipalities. We report a novel approach to modelling suburbanisation: several linear and nonlinear predictive models are applied, and Explainable Artificial Intelligence methods are used to interpret the shape of...
Gespeichert in:
Veröffentlicht in: | The Annals of regional science 2024-04, Vol.72 (4), p.1353-1382 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1382 |
---|---|
container_issue | 4 |
container_start_page | 1353 |
container_title | The Annals of regional science |
container_volume | 72 |
creator | Bogusz, Honorata Winnicki, Szymon Wójcik, Piotr |
description | This article investigates the spatially uneven migration from Warsaw to its suburban municipalities. We report a novel approach to modelling suburbanisation: several linear and nonlinear predictive models are applied, and Explainable Artificial Intelligence methods are used to interpret the shape of relationships between the dependent variable and the most important regressors. The support vector regression algorithm is found to yield the most accurate predictions of the number of migrants to the suburbs of Warsaw. In addition, we find that migrants choose wealthier and more urbanised municipalities that offer better institutional amenities and a shorter driving time to Warsaw’s city centre. |
doi_str_mv | 10.1007/s00168-023-01245-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039610552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039610552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-ffd9660eb2f9e29a2231f1e45ffb688598446a2427cca1b322b5be70231ad0ae3</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOD5-wFXAdWvl0T3dKxHxBQO6UFyGpKcyE7ETTdLKfID_bbQFd64Kqu49BYeQIwYnDGB-mgBY01bARQWMy7rabJEZk4JXUHd8m8ygnkPF2kbukr2UnqGUBGMz8vm01pla3ecQE-2Dz9GZMSPNgY4e39HTNJoxGu1d0tkFf0bvIy5dn51f0bxG6sfBYKTB0sGtovY5URvDQJ90TPrjG-TKaqIk-uHymg66XzuP9AV19IVzQHasfkl4-Dv3yePV5cPFTbW4u769OF9UvQSZK2uXXdMAGm475J3mXDDLUNbWmqZt666VstFc8nnfa2YE56Y2OC9WmF6CRrFPjifuawxvI6asnsMYfXmpBIiuYVDXvKT4lOpjSCmiVa_RDTpuFAP1rVtNulUBqx_dalNKdCphkejSX6XtuJAtl6xExBRJ5ehXGP--_wP-ArkdkIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039610552</pqid></control><display><type>article</type><title>What factors contribute to uneven suburbanisation? Predicting the number of migrants from Warsaw to its suburbs with machine learning</title><source>PAIS Index</source><source>SpringerNature Journals</source><creator>Bogusz, Honorata ; Winnicki, Szymon ; Wójcik, Piotr</creator><creatorcontrib>Bogusz, Honorata ; Winnicki, Szymon ; Wójcik, Piotr</creatorcontrib><description>This article investigates the spatially uneven migration from Warsaw to its suburban municipalities. We report a novel approach to modelling suburbanisation: several linear and nonlinear predictive models are applied, and Explainable Artificial Intelligence methods are used to interpret the shape of relationships between the dependent variable and the most important regressors. The support vector regression algorithm is found to yield the most accurate predictions of the number of migrants to the suburbs of Warsaw. In addition, we find that migrants choose wealthier and more urbanised municipalities that offer better institutional amenities and a shorter driving time to Warsaw’s city centre.</description><identifier>ISSN: 0570-1864</identifier><identifier>EISSN: 1432-0592</identifier><identifier>DOI: 10.1007/s00168-023-01245-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial intelligence ; Cities ; City centres ; Communism ; Dependent variables ; Economics ; Economics and Finance ; Energy consumption ; Environmental Economics ; Explainable artificial intelligence ; Geography ; Künstliche Intelligenz ; Landscape/Regional and Urban Planning ; Machine learning ; Microeconomics ; Migrants ; Migration ; Municipalities ; Original Paper ; Polen ; Prediction models ; Prognoseverfahren ; Regional/Spatial Science ; Suburban areas ; Suburbanisierung ; Suburbanization ; Suburbs ; Support vector machines ; Urban areas ; Urbanization ; Warschau</subject><ispartof>The Annals of regional science, 2024-04, Vol.72 (4), p.1353-1382</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-ffd9660eb2f9e29a2231f1e45ffb688598446a2427cca1b322b5be70231ad0ae3</cites><orcidid>0000-0002-7089-4893 ; 0000-0003-1853-8784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00168-023-01245-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00168-023-01245-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27866,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bogusz, Honorata</creatorcontrib><creatorcontrib>Winnicki, Szymon</creatorcontrib><creatorcontrib>Wójcik, Piotr</creatorcontrib><title>What factors contribute to uneven suburbanisation? Predicting the number of migrants from Warsaw to its suburbs with machine learning</title><title>The Annals of regional science</title><addtitle>Ann Reg Sci</addtitle><description>This article investigates the spatially uneven migration from Warsaw to its suburban municipalities. We report a novel approach to modelling suburbanisation: several linear and nonlinear predictive models are applied, and Explainable Artificial Intelligence methods are used to interpret the shape of relationships between the dependent variable and the most important regressors. The support vector regression algorithm is found to yield the most accurate predictions of the number of migrants to the suburbs of Warsaw. In addition, we find that migrants choose wealthier and more urbanised municipalities that offer better institutional amenities and a shorter driving time to Warsaw’s city centre.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cities</subject><subject>City centres</subject><subject>Communism</subject><subject>Dependent variables</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Energy consumption</subject><subject>Environmental Economics</subject><subject>Explainable artificial intelligence</subject><subject>Geography</subject><subject>Künstliche Intelligenz</subject><subject>Landscape/Regional and Urban Planning</subject><subject>Machine learning</subject><subject>Microeconomics</subject><subject>Migrants</subject><subject>Migration</subject><subject>Municipalities</subject><subject>Original Paper</subject><subject>Polen</subject><subject>Prediction models</subject><subject>Prognoseverfahren</subject><subject>Regional/Spatial Science</subject><subject>Suburban areas</subject><subject>Suburbanisierung</subject><subject>Suburbanization</subject><subject>Suburbs</subject><subject>Support vector machines</subject><subject>Urban areas</subject><subject>Urbanization</subject><subject>Warschau</subject><issn>0570-1864</issn><issn>1432-0592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>7TQ</sourceid><recordid>eNp9kMtKBDEQRYMoOD5-wFXAdWvl0T3dKxHxBQO6UFyGpKcyE7ETTdLKfID_bbQFd64Kqu49BYeQIwYnDGB-mgBY01bARQWMy7rabJEZk4JXUHd8m8ygnkPF2kbukr2UnqGUBGMz8vm01pla3ecQE-2Dz9GZMSPNgY4e39HTNJoxGu1d0tkFf0bvIy5dn51f0bxG6sfBYKTB0sGtovY5URvDQJ90TPrjG-TKaqIk-uHymg66XzuP9AV19IVzQHasfkl4-Dv3yePV5cPFTbW4u769OF9UvQSZK2uXXdMAGm475J3mXDDLUNbWmqZt666VstFc8nnfa2YE56Y2OC9WmF6CRrFPjifuawxvI6asnsMYfXmpBIiuYVDXvKT4lOpjSCmiVa_RDTpuFAP1rVtNulUBqx_dalNKdCphkejSX6XtuJAtl6xExBRJ5ehXGP--_wP-ArkdkIY</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Bogusz, Honorata</creator><creator>Winnicki, Szymon</creator><creator>Wójcik, Piotr</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TQ</scope><scope>8BJ</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-7089-4893</orcidid><orcidid>https://orcid.org/0000-0003-1853-8784</orcidid></search><sort><creationdate>20240401</creationdate><title>What factors contribute to uneven suburbanisation? Predicting the number of migrants from Warsaw to its suburbs with machine learning</title><author>Bogusz, Honorata ; Winnicki, Szymon ; Wójcik, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-ffd9660eb2f9e29a2231f1e45ffb688598446a2427cca1b322b5be70231ad0ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cities</topic><topic>City centres</topic><topic>Communism</topic><topic>Dependent variables</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Energy consumption</topic><topic>Environmental Economics</topic><topic>Explainable artificial intelligence</topic><topic>Geography</topic><topic>Künstliche Intelligenz</topic><topic>Landscape/Regional and Urban Planning</topic><topic>Machine learning</topic><topic>Microeconomics</topic><topic>Migrants</topic><topic>Migration</topic><topic>Municipalities</topic><topic>Original Paper</topic><topic>Polen</topic><topic>Prediction models</topic><topic>Prognoseverfahren</topic><topic>Regional/Spatial Science</topic><topic>Suburban areas</topic><topic>Suburbanisierung</topic><topic>Suburbanization</topic><topic>Suburbs</topic><topic>Support vector machines</topic><topic>Urban areas</topic><topic>Urbanization</topic><topic>Warschau</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogusz, Honorata</creatorcontrib><creatorcontrib>Winnicki, Szymon</creatorcontrib><creatorcontrib>Wójcik, Piotr</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Annals of regional science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogusz, Honorata</au><au>Winnicki, Szymon</au><au>Wójcik, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What factors contribute to uneven suburbanisation? Predicting the number of migrants from Warsaw to its suburbs with machine learning</atitle><jtitle>The Annals of regional science</jtitle><stitle>Ann Reg Sci</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>72</volume><issue>4</issue><spage>1353</spage><epage>1382</epage><pages>1353-1382</pages><issn>0570-1864</issn><eissn>1432-0592</eissn><abstract>This article investigates the spatially uneven migration from Warsaw to its suburban municipalities. We report a novel approach to modelling suburbanisation: several linear and nonlinear predictive models are applied, and Explainable Artificial Intelligence methods are used to interpret the shape of relationships between the dependent variable and the most important regressors. The support vector regression algorithm is found to yield the most accurate predictions of the number of migrants to the suburbs of Warsaw. In addition, we find that migrants choose wealthier and more urbanised municipalities that offer better institutional amenities and a shorter driving time to Warsaw’s city centre.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00168-023-01245-y</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-7089-4893</orcidid><orcidid>https://orcid.org/0000-0003-1853-8784</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0570-1864 |
ispartof | The Annals of regional science, 2024-04, Vol.72 (4), p.1353-1382 |
issn | 0570-1864 1432-0592 |
language | eng |
recordid | cdi_proquest_journals_3039610552 |
source | PAIS Index; SpringerNature Journals |
subjects | Algorithms Artificial intelligence Cities City centres Communism Dependent variables Economics Economics and Finance Energy consumption Environmental Economics Explainable artificial intelligence Geography Künstliche Intelligenz Landscape/Regional and Urban Planning Machine learning Microeconomics Migrants Migration Municipalities Original Paper Polen Prediction models Prognoseverfahren Regional/Spatial Science Suburban areas Suburbanisierung Suburbanization Suburbs Support vector machines Urban areas Urbanization Warschau |
title | What factors contribute to uneven suburbanisation? Predicting the number of migrants from Warsaw to its suburbs with machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20factors%20contribute%20to%20uneven%20suburbanisation?%20Predicting%20the%20number%20of%20migrants%20from%20Warsaw%20to%20its%20suburbs%20with%20machine%20learning&rft.jtitle=The%20Annals%20of%20regional%20science&rft.au=Bogusz,%20Honorata&rft.date=2024-04-01&rft.volume=72&rft.issue=4&rft.spage=1353&rft.epage=1382&rft.pages=1353-1382&rft.issn=0570-1864&rft.eissn=1432-0592&rft_id=info:doi/10.1007/s00168-023-01245-y&rft_dat=%3Cproquest_cross%3E3039610552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039610552&rft_id=info:pmid/&rfr_iscdi=true |