Electronic structures and Mott state of epitaxial TaS2 monolayers

Layered material TaS 2 hosts multiple structural phases and exotic correlated quantum states, including charge density wave (CDW), superconductivity, quantum spin liquid, and Mott insulating state. Here, we synthesized TaS 2 monolayers in H and T phases using the molecular beam epitaxial (MBE) metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2024-05, Vol.67 (5), p.256811, Article 256811
Hauptverfasser: Tian, Qichao, Ding, Chi, Qiu, Xiaodong, Meng, Qinghao, Wang, Kaili, Yu, Fan, Mu, Yuyang, Wang, Can, Sun, Jian, Zhang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 256811
container_title Science China. Physics, mechanics & astronomy
container_volume 67
creator Tian, Qichao
Ding, Chi
Qiu, Xiaodong
Meng, Qinghao
Wang, Kaili
Yu, Fan
Mu, Yuyang
Wang, Can
Sun, Jian
Zhang, Yi
description Layered material TaS 2 hosts multiple structural phases and exotic correlated quantum states, including charge density wave (CDW), superconductivity, quantum spin liquid, and Mott insulating state. Here, we synthesized TaS 2 monolayers in H and T phases using the molecular beam epitaxial (MBE) method and studied their electronic structures via angle-resolved photo-emission spectroscopy (ARPES). We found that the H phase TaS 2 (H-TaS 2 ) monolayer is metallic, with an energy band crossing the Fermi level. In contrast, the T phase TaS 2 (T-TaS 2 ) monolayer shows an insulated energy gap at the Fermi level, while the normal calculated band structure implies it should be metallic without any band gap. However, by considering Hubbard interaction potential U , further density functional theory (DFT) calculation suggests that monolayer T-TaS 2 could be a CDW Mott insulator, and the DFT+ U calculation matches well with the ARPES result. More significantly, the temperature-dependent ARPES result indicates that the CDW Mott state in the T-TaS 2 monolayer is more robust than its bulk counterpart and can persist at room temperature. Our results reveal that the dimensional effect can enhance the CDW Mott state and provide valuable insights for further exploring the exotic properties of monolayer TaS 2 .
doi_str_mv 10.1007/s11433-023-2328-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039357853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3038982791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-89977e50ffbcabb8ed2f2892c578b7c4cb5b653932f1fdb8bf35beb142f40fab3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWGp_gLeA52i-dpMcS6kfoHiwnkOSJrJlu6lJFuy_N2UFT-JcZhje9x3mAeCa4FuCsbjLhHDGEKYMUUYlImdgRmSrEFFUnNe5FRwJxuUlWOS8w7WYwlzwGViue-9KikPnYC5pdGVMPkMzbOFLLKXuTPEwBugPXTFfnenhxrxRuI9D7M3Rp3wFLoLps1_89Dl4v19vVo_o-fXhabV8Ro6qtiCplBC-wSFYZ6yVfksDlYq6RkgrHHe2sW3DFKOBhK2VNrDGeks4DRwHY9kc3Ey5hxQ_R5-L3sUxDfWkZvUdVnMa9o9KKkmFIlVFJpVLMefkgz6kbm_SUROsT0j1hFRXpPqEVJ88dPLkqh0-fPpN_tv0DTxDeEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038982791</pqid></control><display><type>article</type><title>Electronic structures and Mott state of epitaxial TaS2 monolayers</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Tian, Qichao ; Ding, Chi ; Qiu, Xiaodong ; Meng, Qinghao ; Wang, Kaili ; Yu, Fan ; Mu, Yuyang ; Wang, Can ; Sun, Jian ; Zhang, Yi</creator><creatorcontrib>Tian, Qichao ; Ding, Chi ; Qiu, Xiaodong ; Meng, Qinghao ; Wang, Kaili ; Yu, Fan ; Mu, Yuyang ; Wang, Can ; Sun, Jian ; Zhang, Yi</creatorcontrib><description>Layered material TaS 2 hosts multiple structural phases and exotic correlated quantum states, including charge density wave (CDW), superconductivity, quantum spin liquid, and Mott insulating state. Here, we synthesized TaS 2 monolayers in H and T phases using the molecular beam epitaxial (MBE) method and studied their electronic structures via angle-resolved photo-emission spectroscopy (ARPES). We found that the H phase TaS 2 (H-TaS 2 ) monolayer is metallic, with an energy band crossing the Fermi level. In contrast, the T phase TaS 2 (T-TaS 2 ) monolayer shows an insulated energy gap at the Fermi level, while the normal calculated band structure implies it should be metallic without any band gap. However, by considering Hubbard interaction potential U , further density functional theory (DFT) calculation suggests that monolayer T-TaS 2 could be a CDW Mott insulator, and the DFT+ U calculation matches well with the ARPES result. More significantly, the temperature-dependent ARPES result indicates that the CDW Mott state in the T-TaS 2 monolayer is more robust than its bulk counterpart and can persist at room temperature. Our results reveal that the dimensional effect can enhance the CDW Mott state and provide valuable insights for further exploring the exotic properties of monolayer TaS 2 .</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-023-2328-1</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Astronomy ; Charge density waves ; Classical and Continuum Physics ; Density functional theory ; Electrons ; Emission analysis ; Emission spectroscopy ; Energy ; Energy bands ; Energy gap ; Fermi level ; Graphene ; Mathematical analysis ; Molecular beam epitaxy ; Molecular beams ; Monolayers ; Observations and Techniques ; Physics ; Physics and Astronomy ; Room temperature ; Spectrum analysis ; Spin liquid ; Superconductivity ; Temperature dependence</subject><ispartof>Science China. Physics, mechanics &amp; astronomy, 2024-05, Vol.67 (5), p.256811, Article 256811</ispartof><rights>Science China Press 2024</rights><rights>Science China Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-89977e50ffbcabb8ed2f2892c578b7c4cb5b653932f1fdb8bf35beb142f40fab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-023-2328-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-023-2328-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Tian, Qichao</creatorcontrib><creatorcontrib>Ding, Chi</creatorcontrib><creatorcontrib>Qiu, Xiaodong</creatorcontrib><creatorcontrib>Meng, Qinghao</creatorcontrib><creatorcontrib>Wang, Kaili</creatorcontrib><creatorcontrib>Yu, Fan</creatorcontrib><creatorcontrib>Mu, Yuyang</creatorcontrib><creatorcontrib>Wang, Can</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><title>Electronic structures and Mott state of epitaxial TaS2 monolayers</title><title>Science China. Physics, mechanics &amp; astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><description>Layered material TaS 2 hosts multiple structural phases and exotic correlated quantum states, including charge density wave (CDW), superconductivity, quantum spin liquid, and Mott insulating state. Here, we synthesized TaS 2 monolayers in H and T phases using the molecular beam epitaxial (MBE) method and studied their electronic structures via angle-resolved photo-emission spectroscopy (ARPES). We found that the H phase TaS 2 (H-TaS 2 ) monolayer is metallic, with an energy band crossing the Fermi level. In contrast, the T phase TaS 2 (T-TaS 2 ) monolayer shows an insulated energy gap at the Fermi level, while the normal calculated band structure implies it should be metallic without any band gap. However, by considering Hubbard interaction potential U , further density functional theory (DFT) calculation suggests that monolayer T-TaS 2 could be a CDW Mott insulator, and the DFT+ U calculation matches well with the ARPES result. More significantly, the temperature-dependent ARPES result indicates that the CDW Mott state in the T-TaS 2 monolayer is more robust than its bulk counterpart and can persist at room temperature. Our results reveal that the dimensional effect can enhance the CDW Mott state and provide valuable insights for further exploring the exotic properties of monolayer TaS 2 .</description><subject>Astronomy</subject><subject>Charge density waves</subject><subject>Classical and Continuum Physics</subject><subject>Density functional theory</subject><subject>Electrons</subject><subject>Emission analysis</subject><subject>Emission spectroscopy</subject><subject>Energy</subject><subject>Energy bands</subject><subject>Energy gap</subject><subject>Fermi level</subject><subject>Graphene</subject><subject>Mathematical analysis</subject><subject>Molecular beam epitaxy</subject><subject>Molecular beams</subject><subject>Monolayers</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Room temperature</subject><subject>Spectrum analysis</subject><subject>Spin liquid</subject><subject>Superconductivity</subject><subject>Temperature dependence</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWGp_gLeA52i-dpMcS6kfoHiwnkOSJrJlu6lJFuy_N2UFT-JcZhje9x3mAeCa4FuCsbjLhHDGEKYMUUYlImdgRmSrEFFUnNe5FRwJxuUlWOS8w7WYwlzwGViue-9KikPnYC5pdGVMPkMzbOFLLKXuTPEwBugPXTFfnenhxrxRuI9D7M3Rp3wFLoLps1_89Dl4v19vVo_o-fXhabV8Ro6qtiCplBC-wSFYZ6yVfksDlYq6RkgrHHe2sW3DFKOBhK2VNrDGeks4DRwHY9kc3Ey5hxQ_R5-L3sUxDfWkZvUdVnMa9o9KKkmFIlVFJpVLMefkgz6kbm_SUROsT0j1hFRXpPqEVJ88dPLkqh0-fPpN_tv0DTxDeEQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Tian, Qichao</creator><creator>Ding, Chi</creator><creator>Qiu, Xiaodong</creator><creator>Meng, Qinghao</creator><creator>Wang, Kaili</creator><creator>Yu, Fan</creator><creator>Mu, Yuyang</creator><creator>Wang, Can</creator><creator>Sun, Jian</creator><creator>Zhang, Yi</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240501</creationdate><title>Electronic structures and Mott state of epitaxial TaS2 monolayers</title><author>Tian, Qichao ; Ding, Chi ; Qiu, Xiaodong ; Meng, Qinghao ; Wang, Kaili ; Yu, Fan ; Mu, Yuyang ; Wang, Can ; Sun, Jian ; Zhang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-89977e50ffbcabb8ed2f2892c578b7c4cb5b653932f1fdb8bf35beb142f40fab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astronomy</topic><topic>Charge density waves</topic><topic>Classical and Continuum Physics</topic><topic>Density functional theory</topic><topic>Electrons</topic><topic>Emission analysis</topic><topic>Emission spectroscopy</topic><topic>Energy</topic><topic>Energy bands</topic><topic>Energy gap</topic><topic>Fermi level</topic><topic>Graphene</topic><topic>Mathematical analysis</topic><topic>Molecular beam epitaxy</topic><topic>Molecular beams</topic><topic>Monolayers</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Room temperature</topic><topic>Spectrum analysis</topic><topic>Spin liquid</topic><topic>Superconductivity</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Qichao</creatorcontrib><creatorcontrib>Ding, Chi</creatorcontrib><creatorcontrib>Qiu, Xiaodong</creatorcontrib><creatorcontrib>Meng, Qinghao</creatorcontrib><creatorcontrib>Wang, Kaili</creatorcontrib><creatorcontrib>Yu, Fan</creatorcontrib><creatorcontrib>Mu, Yuyang</creatorcontrib><creatorcontrib>Wang, Can</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Qichao</au><au>Ding, Chi</au><au>Qiu, Xiaodong</au><au>Meng, Qinghao</au><au>Wang, Kaili</au><au>Yu, Fan</au><au>Mu, Yuyang</au><au>Wang, Can</au><au>Sun, Jian</au><au>Zhang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic structures and Mott state of epitaxial TaS2 monolayers</atitle><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>67</volume><issue>5</issue><spage>256811</spage><pages>256811-</pages><artnum>256811</artnum><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>Layered material TaS 2 hosts multiple structural phases and exotic correlated quantum states, including charge density wave (CDW), superconductivity, quantum spin liquid, and Mott insulating state. Here, we synthesized TaS 2 monolayers in H and T phases using the molecular beam epitaxial (MBE) method and studied their electronic structures via angle-resolved photo-emission spectroscopy (ARPES). We found that the H phase TaS 2 (H-TaS 2 ) monolayer is metallic, with an energy band crossing the Fermi level. In contrast, the T phase TaS 2 (T-TaS 2 ) monolayer shows an insulated energy gap at the Fermi level, while the normal calculated band structure implies it should be metallic without any band gap. However, by considering Hubbard interaction potential U , further density functional theory (DFT) calculation suggests that monolayer T-TaS 2 could be a CDW Mott insulator, and the DFT+ U calculation matches well with the ARPES result. More significantly, the temperature-dependent ARPES result indicates that the CDW Mott state in the T-TaS 2 monolayer is more robust than its bulk counterpart and can persist at room temperature. Our results reveal that the dimensional effect can enhance the CDW Mott state and provide valuable insights for further exploring the exotic properties of monolayer TaS 2 .</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11433-023-2328-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 1674-7348
ispartof Science China. Physics, mechanics & astronomy, 2024-05, Vol.67 (5), p.256811, Article 256811
issn 1674-7348
1869-1927
language eng
recordid cdi_proquest_journals_3039357853
source SpringerNature Journals; Alma/SFX Local Collection
subjects Astronomy
Charge density waves
Classical and Continuum Physics
Density functional theory
Electrons
Emission analysis
Emission spectroscopy
Energy
Energy bands
Energy gap
Fermi level
Graphene
Mathematical analysis
Molecular beam epitaxy
Molecular beams
Monolayers
Observations and Techniques
Physics
Physics and Astronomy
Room temperature
Spectrum analysis
Spin liquid
Superconductivity
Temperature dependence
title Electronic structures and Mott state of epitaxial TaS2 monolayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20structures%20and%20Mott%20state%20of%20epitaxial%20TaS2%20monolayers&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Tian,%20Qichao&rft.date=2024-05-01&rft.volume=67&rft.issue=5&rft.spage=256811&rft.pages=256811-&rft.artnum=256811&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-023-2328-1&rft_dat=%3Cproquest_cross%3E3038982791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038982791&rft_id=info:pmid/&rfr_iscdi=true