Single-step-etched ultra-compact metamaterial grating coupler enabled by a hierarchical inverse design approach
With the concept of metamaterials introduced into integrated photonics, subwavelength structures have gained popularity for their ability to create devices with ultra-compact size, high performance, and versatile functionalities. However, traditional metamaterial design methods are usually based on...
Gespeichert in:
Veröffentlicht in: | Science China. Physics, mechanics & astronomy mechanics & astronomy, 2024-02, Vol.67 (2), p.224211, Article 224211 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 224211 |
container_title | Science China. Physics, mechanics & astronomy |
container_volume | 67 |
creator | Wang, Qiao Luo, Ruiqi Liu, Nan Hou, Maojing Xiong, Bo Liu, Guandong Ma, Wei |
description | With the concept of metamaterials introduced into integrated photonics, subwavelength structures have gained popularity for their ability to create devices with ultra-compact size, high performance, and versatile functionalities. However, traditional metamaterial design methods are usually based on empirical templates and physical approximations, lacking the ability to design free-form metamaterial structures and optimize entire devices globally. In this work, we propose a hierarchical inverse design approach that combines a conventional effective refractive index based metamaterial structures design with a follow-up global topology optimization. The empirical metamaterial grating coupler design based on effective refractive index engineering faces inaccurate index extraction and insufficient approximation of wavevector matching conditions, which deteriorates coupling efficiency, especially for fully-etched devices with the decreased tapering region. Fortunately, a subsequent overall topology optimization step can well compensate for the negative effect of the shrinking device footprint to increase the efficiency of the metamaterial grating coupler. We demonstrate a 23 μm×10 μm ultra-compact metamaterial grating coupler with single-step-etched to couple light between a fiber and a 500 nm single-mode silicon waveguide in the O-band. Experimental measurement shows an insertion loss of 3.17 dB and a 3 dB bandwidth of 77 nm, making it the smallest footprint device ever reported. |
doi_str_mv | 10.1007/s11433-023-2236-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039357810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039357810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-ba13c9035eab725ddcc9ca30c4733700f75c5895fa60053ecd05d2aca0820a3e3</originalsourceid><addsrcrecordid>eNqFkU1r20AQhkVIIcbND-htIedtZ3ckrfYYTL_AkEOT8zIejW0FWVJ314X8-25woaeQucwcnmeG4a2qTwY-GwD3JRlTI2qwqK3FVuNVtTJd67Xx1l2XuXW1dlh3N9VtSs9QCj3Url5V869hOoyiU5ZFS-aj9Oo85kia59NCnNVJMp0oSxxoVIdIuQiK5_MySlQy0W4syu5FkToOEinyceBCDtMfiUlUL2k4TIqWJc7Ex4_Vhz2NSW7_9XX19O3r4-aH3j58_7m532q2vs16RwbZAzZCO2ebvmf2TAhcO0QHsHcNN51v9tQCNCjcQ9NbYoLOAqHgurq77C1nf58l5fA8n-NUTgYsz2PjOgPvUJ13xjtXKHOhOM4pRdmHJQ4nii_BQHgNIFwCCCWA8BpAwOLYi5MKOx0k_t_8tvQXjUuJBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038971977</pqid></control><display><type>article</type><title>Single-step-etched ultra-compact metamaterial grating coupler enabled by a hierarchical inverse design approach</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Qiao ; Luo, Ruiqi ; Liu, Nan ; Hou, Maojing ; Xiong, Bo ; Liu, Guandong ; Ma, Wei</creator><creatorcontrib>Wang, Qiao ; Luo, Ruiqi ; Liu, Nan ; Hou, Maojing ; Xiong, Bo ; Liu, Guandong ; Ma, Wei</creatorcontrib><description>With the concept of metamaterials introduced into integrated photonics, subwavelength structures have gained popularity for their ability to create devices with ultra-compact size, high performance, and versatile functionalities. However, traditional metamaterial design methods are usually based on empirical templates and physical approximations, lacking the ability to design free-form metamaterial structures and optimize entire devices globally. In this work, we propose a hierarchical inverse design approach that combines a conventional effective refractive index based metamaterial structures design with a follow-up global topology optimization. The empirical metamaterial grating coupler design based on effective refractive index engineering faces inaccurate index extraction and insufficient approximation of wavevector matching conditions, which deteriorates coupling efficiency, especially for fully-etched devices with the decreased tapering region. Fortunately, a subsequent overall topology optimization step can well compensate for the negative effect of the shrinking device footprint to increase the efficiency of the metamaterial grating coupler. We demonstrate a 23 μm×10 μm ultra-compact metamaterial grating coupler with single-step-etched to couple light between a fiber and a 500 nm single-mode silicon waveguide in the O-band. Experimental measurement shows an insertion loss of 3.17 dB and a 3 dB bandwidth of 77 nm, making it the smallest footprint device ever reported.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-023-2236-3</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Approximation ; Astronomy ; Bandwidths ; Classical and Continuum Physics ; Couplers ; Design optimization ; Design techniques ; Efficiency ; Flexibility ; Free form ; Insertion loss ; Inverse design ; Light ; Metamaterials ; Observations and Techniques ; Optimization ; Photonics ; Physics ; Physics and Astronomy ; Refractivity ; Silicon ; Tapering ; Topology ; Topology optimization ; Waveguides</subject><ispartof>Science China. Physics, mechanics & astronomy, 2024-02, Vol.67 (2), p.224211, Article 224211</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-ba13c9035eab725ddcc9ca30c4733700f75c5895fa60053ecd05d2aca0820a3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-023-2236-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-023-2236-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Qiao</creatorcontrib><creatorcontrib>Luo, Ruiqi</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><creatorcontrib>Hou, Maojing</creatorcontrib><creatorcontrib>Xiong, Bo</creatorcontrib><creatorcontrib>Liu, Guandong</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><title>Single-step-etched ultra-compact metamaterial grating coupler enabled by a hierarchical inverse design approach</title><title>Science China. Physics, mechanics & astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><description>With the concept of metamaterials introduced into integrated photonics, subwavelength structures have gained popularity for their ability to create devices with ultra-compact size, high performance, and versatile functionalities. However, traditional metamaterial design methods are usually based on empirical templates and physical approximations, lacking the ability to design free-form metamaterial structures and optimize entire devices globally. In this work, we propose a hierarchical inverse design approach that combines a conventional effective refractive index based metamaterial structures design with a follow-up global topology optimization. The empirical metamaterial grating coupler design based on effective refractive index engineering faces inaccurate index extraction and insufficient approximation of wavevector matching conditions, which deteriorates coupling efficiency, especially for fully-etched devices with the decreased tapering region. Fortunately, a subsequent overall topology optimization step can well compensate for the negative effect of the shrinking device footprint to increase the efficiency of the metamaterial grating coupler. We demonstrate a 23 μm×10 μm ultra-compact metamaterial grating coupler with single-step-etched to couple light between a fiber and a 500 nm single-mode silicon waveguide in the O-band. Experimental measurement shows an insertion loss of 3.17 dB and a 3 dB bandwidth of 77 nm, making it the smallest footprint device ever reported.</description><subject>Approximation</subject><subject>Astronomy</subject><subject>Bandwidths</subject><subject>Classical and Continuum Physics</subject><subject>Couplers</subject><subject>Design optimization</subject><subject>Design techniques</subject><subject>Efficiency</subject><subject>Flexibility</subject><subject>Free form</subject><subject>Insertion loss</subject><subject>Inverse design</subject><subject>Light</subject><subject>Metamaterials</subject><subject>Observations and Techniques</subject><subject>Optimization</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Refractivity</subject><subject>Silicon</subject><subject>Tapering</subject><subject>Topology</subject><subject>Topology optimization</subject><subject>Waveguides</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkU1r20AQhkVIIcbND-htIedtZ3ckrfYYTL_AkEOT8zIejW0FWVJ314X8-25woaeQucwcnmeG4a2qTwY-GwD3JRlTI2qwqK3FVuNVtTJd67Xx1l2XuXW1dlh3N9VtSs9QCj3Url5V869hOoyiU5ZFS-aj9Oo85kia59NCnNVJMp0oSxxoVIdIuQiK5_MySlQy0W4syu5FkToOEinyceBCDtMfiUlUL2k4TIqWJc7Ex4_Vhz2NSW7_9XX19O3r4-aH3j58_7m532q2vs16RwbZAzZCO2ebvmf2TAhcO0QHsHcNN51v9tQCNCjcQ9NbYoLOAqHgurq77C1nf58l5fA8n-NUTgYsz2PjOgPvUJ13xjtXKHOhOM4pRdmHJQ4nii_BQHgNIFwCCCWA8BpAwOLYi5MKOx0k_t_8tvQXjUuJBA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wang, Qiao</creator><creator>Luo, Ruiqi</creator><creator>Liu, Nan</creator><creator>Hou, Maojing</creator><creator>Xiong, Bo</creator><creator>Liu, Guandong</creator><creator>Ma, Wei</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20240201</creationdate><title>Single-step-etched ultra-compact metamaterial grating coupler enabled by a hierarchical inverse design approach</title><author>Wang, Qiao ; Luo, Ruiqi ; Liu, Nan ; Hou, Maojing ; Xiong, Bo ; Liu, Guandong ; Ma, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-ba13c9035eab725ddcc9ca30c4733700f75c5895fa60053ecd05d2aca0820a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Astronomy</topic><topic>Bandwidths</topic><topic>Classical and Continuum Physics</topic><topic>Couplers</topic><topic>Design optimization</topic><topic>Design techniques</topic><topic>Efficiency</topic><topic>Flexibility</topic><topic>Free form</topic><topic>Insertion loss</topic><topic>Inverse design</topic><topic>Light</topic><topic>Metamaterials</topic><topic>Observations and Techniques</topic><topic>Optimization</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Refractivity</topic><topic>Silicon</topic><topic>Tapering</topic><topic>Topology</topic><topic>Topology optimization</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiao</creatorcontrib><creatorcontrib>Luo, Ruiqi</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><creatorcontrib>Hou, Maojing</creatorcontrib><creatorcontrib>Xiong, Bo</creatorcontrib><creatorcontrib>Liu, Guandong</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Science China. Physics, mechanics & astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qiao</au><au>Luo, Ruiqi</au><au>Liu, Nan</au><au>Hou, Maojing</au><au>Xiong, Bo</au><au>Liu, Guandong</au><au>Ma, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-step-etched ultra-compact metamaterial grating coupler enabled by a hierarchical inverse design approach</atitle><jtitle>Science China. Physics, mechanics & astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>67</volume><issue>2</issue><spage>224211</spage><pages>224211-</pages><artnum>224211</artnum><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>With the concept of metamaterials introduced into integrated photonics, subwavelength structures have gained popularity for their ability to create devices with ultra-compact size, high performance, and versatile functionalities. However, traditional metamaterial design methods are usually based on empirical templates and physical approximations, lacking the ability to design free-form metamaterial structures and optimize entire devices globally. In this work, we propose a hierarchical inverse design approach that combines a conventional effective refractive index based metamaterial structures design with a follow-up global topology optimization. The empirical metamaterial grating coupler design based on effective refractive index engineering faces inaccurate index extraction and insufficient approximation of wavevector matching conditions, which deteriorates coupling efficiency, especially for fully-etched devices with the decreased tapering region. Fortunately, a subsequent overall topology optimization step can well compensate for the negative effect of the shrinking device footprint to increase the efficiency of the metamaterial grating coupler. We demonstrate a 23 μm×10 μm ultra-compact metamaterial grating coupler with single-step-etched to couple light between a fiber and a 500 nm single-mode silicon waveguide in the O-band. Experimental measurement shows an insertion loss of 3.17 dB and a 3 dB bandwidth of 77 nm, making it the smallest footprint device ever reported.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11433-023-2236-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7348 |
ispartof | Science China. Physics, mechanics & astronomy, 2024-02, Vol.67 (2), p.224211, Article 224211 |
issn | 1674-7348 1869-1927 |
language | eng |
recordid | cdi_proquest_journals_3039357810 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Approximation Astronomy Bandwidths Classical and Continuum Physics Couplers Design optimization Design techniques Efficiency Flexibility Free form Insertion loss Inverse design Light Metamaterials Observations and Techniques Optimization Photonics Physics Physics and Astronomy Refractivity Silicon Tapering Topology Topology optimization Waveguides |
title | Single-step-etched ultra-compact metamaterial grating coupler enabled by a hierarchical inverse design approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-step-etched%20ultra-compact%20metamaterial%20grating%20coupler%20enabled%20by%20a%20hierarchical%20inverse%20design%20approach&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Wang,%20Qiao&rft.date=2024-02-01&rft.volume=67&rft.issue=2&rft.spage=224211&rft.pages=224211-&rft.artnum=224211&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-023-2236-3&rft_dat=%3Cproquest_cross%3E3039357810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038971977&rft_id=info:pmid/&rfr_iscdi=true |