Single-step-etched ultra-compact metamaterial grating coupler enabled by a hierarchical inverse design approach

With the concept of metamaterials introduced into integrated photonics, subwavelength structures have gained popularity for their ability to create devices with ultra-compact size, high performance, and versatile functionalities. However, traditional metamaterial design methods are usually based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2024-02, Vol.67 (2), p.224211, Article 224211
Hauptverfasser: Wang, Qiao, Luo, Ruiqi, Liu, Nan, Hou, Maojing, Xiong, Bo, Liu, Guandong, Ma, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 224211
container_title Science China. Physics, mechanics & astronomy
container_volume 67
creator Wang, Qiao
Luo, Ruiqi
Liu, Nan
Hou, Maojing
Xiong, Bo
Liu, Guandong
Ma, Wei
description With the concept of metamaterials introduced into integrated photonics, subwavelength structures have gained popularity for their ability to create devices with ultra-compact size, high performance, and versatile functionalities. However, traditional metamaterial design methods are usually based on empirical templates and physical approximations, lacking the ability to design free-form metamaterial structures and optimize entire devices globally. In this work, we propose a hierarchical inverse design approach that combines a conventional effective refractive index based metamaterial structures design with a follow-up global topology optimization. The empirical metamaterial grating coupler design based on effective refractive index engineering faces inaccurate index extraction and insufficient approximation of wavevector matching conditions, which deteriorates coupling efficiency, especially for fully-etched devices with the decreased tapering region. Fortunately, a subsequent overall topology optimization step can well compensate for the negative effect of the shrinking device footprint to increase the efficiency of the metamaterial grating coupler. We demonstrate a 23 μm×10 μm ultra-compact metamaterial grating coupler with single-step-etched to couple light between a fiber and a 500 nm single-mode silicon waveguide in the O-band. Experimental measurement shows an insertion loss of 3.17 dB and a 3 dB bandwidth of 77 nm, making it the smallest footprint device ever reported.
doi_str_mv 10.1007/s11433-023-2236-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039357810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039357810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-ba13c9035eab725ddcc9ca30c4733700f75c5895fa60053ecd05d2aca0820a3e3</originalsourceid><addsrcrecordid>eNqFkU1r20AQhkVIIcbND-htIedtZ3ckrfYYTL_AkEOT8zIejW0FWVJ314X8-25woaeQucwcnmeG4a2qTwY-GwD3JRlTI2qwqK3FVuNVtTJd67Xx1l2XuXW1dlh3N9VtSs9QCj3Url5V869hOoyiU5ZFS-aj9Oo85kia59NCnNVJMp0oSxxoVIdIuQiK5_MySlQy0W4syu5FkToOEinyceBCDtMfiUlUL2k4TIqWJc7Ex4_Vhz2NSW7_9XX19O3r4-aH3j58_7m532q2vs16RwbZAzZCO2ebvmf2TAhcO0QHsHcNN51v9tQCNCjcQ9NbYoLOAqHgurq77C1nf58l5fA8n-NUTgYsz2PjOgPvUJ13xjtXKHOhOM4pRdmHJQ4nii_BQHgNIFwCCCWA8BpAwOLYi5MKOx0k_t_8tvQXjUuJBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038971977</pqid></control><display><type>article</type><title>Single-step-etched ultra-compact metamaterial grating coupler enabled by a hierarchical inverse design approach</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Qiao ; Luo, Ruiqi ; Liu, Nan ; Hou, Maojing ; Xiong, Bo ; Liu, Guandong ; Ma, Wei</creator><creatorcontrib>Wang, Qiao ; Luo, Ruiqi ; Liu, Nan ; Hou, Maojing ; Xiong, Bo ; Liu, Guandong ; Ma, Wei</creatorcontrib><description>With the concept of metamaterials introduced into integrated photonics, subwavelength structures have gained popularity for their ability to create devices with ultra-compact size, high performance, and versatile functionalities. However, traditional metamaterial design methods are usually based on empirical templates and physical approximations, lacking the ability to design free-form metamaterial structures and optimize entire devices globally. In this work, we propose a hierarchical inverse design approach that combines a conventional effective refractive index based metamaterial structures design with a follow-up global topology optimization. The empirical metamaterial grating coupler design based on effective refractive index engineering faces inaccurate index extraction and insufficient approximation of wavevector matching conditions, which deteriorates coupling efficiency, especially for fully-etched devices with the decreased tapering region. Fortunately, a subsequent overall topology optimization step can well compensate for the negative effect of the shrinking device footprint to increase the efficiency of the metamaterial grating coupler. We demonstrate a 23 μm×10 μm ultra-compact metamaterial grating coupler with single-step-etched to couple light between a fiber and a 500 nm single-mode silicon waveguide in the O-band. Experimental measurement shows an insertion loss of 3.17 dB and a 3 dB bandwidth of 77 nm, making it the smallest footprint device ever reported.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-023-2236-3</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Approximation ; Astronomy ; Bandwidths ; Classical and Continuum Physics ; Couplers ; Design optimization ; Design techniques ; Efficiency ; Flexibility ; Free form ; Insertion loss ; Inverse design ; Light ; Metamaterials ; Observations and Techniques ; Optimization ; Photonics ; Physics ; Physics and Astronomy ; Refractivity ; Silicon ; Tapering ; Topology ; Topology optimization ; Waveguides</subject><ispartof>Science China. Physics, mechanics &amp; astronomy, 2024-02, Vol.67 (2), p.224211, Article 224211</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-ba13c9035eab725ddcc9ca30c4733700f75c5895fa60053ecd05d2aca0820a3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-023-2236-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-023-2236-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Qiao</creatorcontrib><creatorcontrib>Luo, Ruiqi</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><creatorcontrib>Hou, Maojing</creatorcontrib><creatorcontrib>Xiong, Bo</creatorcontrib><creatorcontrib>Liu, Guandong</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><title>Single-step-etched ultra-compact metamaterial grating coupler enabled by a hierarchical inverse design approach</title><title>Science China. Physics, mechanics &amp; astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><description>With the concept of metamaterials introduced into integrated photonics, subwavelength structures have gained popularity for their ability to create devices with ultra-compact size, high performance, and versatile functionalities. However, traditional metamaterial design methods are usually based on empirical templates and physical approximations, lacking the ability to design free-form metamaterial structures and optimize entire devices globally. In this work, we propose a hierarchical inverse design approach that combines a conventional effective refractive index based metamaterial structures design with a follow-up global topology optimization. The empirical metamaterial grating coupler design based on effective refractive index engineering faces inaccurate index extraction and insufficient approximation of wavevector matching conditions, which deteriorates coupling efficiency, especially for fully-etched devices with the decreased tapering region. Fortunately, a subsequent overall topology optimization step can well compensate for the negative effect of the shrinking device footprint to increase the efficiency of the metamaterial grating coupler. We demonstrate a 23 μm×10 μm ultra-compact metamaterial grating coupler with single-step-etched to couple light between a fiber and a 500 nm single-mode silicon waveguide in the O-band. Experimental measurement shows an insertion loss of 3.17 dB and a 3 dB bandwidth of 77 nm, making it the smallest footprint device ever reported.</description><subject>Approximation</subject><subject>Astronomy</subject><subject>Bandwidths</subject><subject>Classical and Continuum Physics</subject><subject>Couplers</subject><subject>Design optimization</subject><subject>Design techniques</subject><subject>Efficiency</subject><subject>Flexibility</subject><subject>Free form</subject><subject>Insertion loss</subject><subject>Inverse design</subject><subject>Light</subject><subject>Metamaterials</subject><subject>Observations and Techniques</subject><subject>Optimization</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Refractivity</subject><subject>Silicon</subject><subject>Tapering</subject><subject>Topology</subject><subject>Topology optimization</subject><subject>Waveguides</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkU1r20AQhkVIIcbND-htIedtZ3ckrfYYTL_AkEOT8zIejW0FWVJ314X8-25woaeQucwcnmeG4a2qTwY-GwD3JRlTI2qwqK3FVuNVtTJd67Xx1l2XuXW1dlh3N9VtSs9QCj3Url5V869hOoyiU5ZFS-aj9Oo85kia59NCnNVJMp0oSxxoVIdIuQiK5_MySlQy0W4syu5FkToOEinyceBCDtMfiUlUL2k4TIqWJc7Ex4_Vhz2NSW7_9XX19O3r4-aH3j58_7m532q2vs16RwbZAzZCO2ebvmf2TAhcO0QHsHcNN51v9tQCNCjcQ9NbYoLOAqHgurq77C1nf58l5fA8n-NUTgYsz2PjOgPvUJ13xjtXKHOhOM4pRdmHJQ4nii_BQHgNIFwCCCWA8BpAwOLYi5MKOx0k_t_8tvQXjUuJBA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wang, Qiao</creator><creator>Luo, Ruiqi</creator><creator>Liu, Nan</creator><creator>Hou, Maojing</creator><creator>Xiong, Bo</creator><creator>Liu, Guandong</creator><creator>Ma, Wei</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20240201</creationdate><title>Single-step-etched ultra-compact metamaterial grating coupler enabled by a hierarchical inverse design approach</title><author>Wang, Qiao ; Luo, Ruiqi ; Liu, Nan ; Hou, Maojing ; Xiong, Bo ; Liu, Guandong ; Ma, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-ba13c9035eab725ddcc9ca30c4733700f75c5895fa60053ecd05d2aca0820a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Astronomy</topic><topic>Bandwidths</topic><topic>Classical and Continuum Physics</topic><topic>Couplers</topic><topic>Design optimization</topic><topic>Design techniques</topic><topic>Efficiency</topic><topic>Flexibility</topic><topic>Free form</topic><topic>Insertion loss</topic><topic>Inverse design</topic><topic>Light</topic><topic>Metamaterials</topic><topic>Observations and Techniques</topic><topic>Optimization</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Refractivity</topic><topic>Silicon</topic><topic>Tapering</topic><topic>Topology</topic><topic>Topology optimization</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiao</creatorcontrib><creatorcontrib>Luo, Ruiqi</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><creatorcontrib>Hou, Maojing</creatorcontrib><creatorcontrib>Xiong, Bo</creatorcontrib><creatorcontrib>Liu, Guandong</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qiao</au><au>Luo, Ruiqi</au><au>Liu, Nan</au><au>Hou, Maojing</au><au>Xiong, Bo</au><au>Liu, Guandong</au><au>Ma, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-step-etched ultra-compact metamaterial grating coupler enabled by a hierarchical inverse design approach</atitle><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>67</volume><issue>2</issue><spage>224211</spage><pages>224211-</pages><artnum>224211</artnum><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>With the concept of metamaterials introduced into integrated photonics, subwavelength structures have gained popularity for their ability to create devices with ultra-compact size, high performance, and versatile functionalities. However, traditional metamaterial design methods are usually based on empirical templates and physical approximations, lacking the ability to design free-form metamaterial structures and optimize entire devices globally. In this work, we propose a hierarchical inverse design approach that combines a conventional effective refractive index based metamaterial structures design with a follow-up global topology optimization. The empirical metamaterial grating coupler design based on effective refractive index engineering faces inaccurate index extraction and insufficient approximation of wavevector matching conditions, which deteriorates coupling efficiency, especially for fully-etched devices with the decreased tapering region. Fortunately, a subsequent overall topology optimization step can well compensate for the negative effect of the shrinking device footprint to increase the efficiency of the metamaterial grating coupler. We demonstrate a 23 μm×10 μm ultra-compact metamaterial grating coupler with single-step-etched to couple light between a fiber and a 500 nm single-mode silicon waveguide in the O-band. Experimental measurement shows an insertion loss of 3.17 dB and a 3 dB bandwidth of 77 nm, making it the smallest footprint device ever reported.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11433-023-2236-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 1674-7348
ispartof Science China. Physics, mechanics & astronomy, 2024-02, Vol.67 (2), p.224211, Article 224211
issn 1674-7348
1869-1927
language eng
recordid cdi_proquest_journals_3039357810
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Approximation
Astronomy
Bandwidths
Classical and Continuum Physics
Couplers
Design optimization
Design techniques
Efficiency
Flexibility
Free form
Insertion loss
Inverse design
Light
Metamaterials
Observations and Techniques
Optimization
Photonics
Physics
Physics and Astronomy
Refractivity
Silicon
Tapering
Topology
Topology optimization
Waveguides
title Single-step-etched ultra-compact metamaterial grating coupler enabled by a hierarchical inverse design approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-step-etched%20ultra-compact%20metamaterial%20grating%20coupler%20enabled%20by%20a%20hierarchical%20inverse%20design%20approach&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Wang,%20Qiao&rft.date=2024-02-01&rft.volume=67&rft.issue=2&rft.spage=224211&rft.pages=224211-&rft.artnum=224211&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-023-2236-3&rft_dat=%3Cproquest_cross%3E3039357810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038971977&rft_id=info:pmid/&rfr_iscdi=true