Feature selection and prediction of small-for-gestational-age infants

The small-for-gestational-age (SGA) condition often causes serious problems. Therefore, identifying the risk factors for SGA is important. Traditional statistical methods such as stepwise logistic regression (LR) have been widely utilized to discover possible risk factors. However, other feature sel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ambient intelligence and humanized computing 2024-03, Vol.15 (3), p.1881-1895
Hauptverfasser: Li, Jianqiang, Liu, Lu, Zhou, MengChu, Yang, Ji-Jiang, Chen, Shi, Liu, HuiTing, Wang, Qing, Pan, Hui, Sun, ZhiHua, Tan, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1895
container_issue 3
container_start_page 1881
container_title Journal of ambient intelligence and humanized computing
container_volume 15
creator Li, Jianqiang
Liu, Lu
Zhou, MengChu
Yang, Ji-Jiang
Chen, Shi
Liu, HuiTing
Wang, Qing
Pan, Hui
Sun, ZhiHua
Tan, Feng
description The small-for-gestational-age (SGA) condition often causes serious problems. Therefore, identifying the risk factors for SGA is important. Traditional statistical methods such as stepwise logistic regression (LR) have been widely utilized to discover possible risk factors. However, other feature selection methods from machine learning field have rarely been employed for the task. In this paper, a comparison of five feature selection methods from both fields for SGA risk factors analysis is conducted for the first time. To evaluate their performance, four classification algorithms are used to construct SGA prediction models. The evaluation criteria are precision and the area under the receiver operator characteristic curve. Stepwise LR achieves the best performance among the five feature selection methods, because it conducts both a univariate significance test and a model significance test, which make it more suitable for handling the complex relations among features. The top 20 features selected by each feature selection method and the 27 features selected by four or five of them could assist physicians to revise traditional SGA evaluation models. Ensemble method is also exploited to build effective SGA prediction models based on the feature subsets, which is indeed superior compared with the individual ones shown in the results.
doi_str_mv 10.1007/s12652-018-0892-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039357729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039357729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2592-ee0e56abf4a3142d60b1f24ea90689c9c124b03c24772ffe47762daa27d3b1313</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLgsu4P8FbwHM1M0rQ5yrKrwoIXPYe0nSxduu2adA_-e1MqehLnMh-893jzGLsFcQ9CFA8RUOfIBZRclAY5XrAFlLrkOaj88meWxTVbxXgQqaSRALBgmy258Rwoi9RRPbZDn7m-yU6BmnZeB5_Fo-s67ofA9xRHN51dx92esrb3rh_jDbvyrou0-u5L9r7dvK2f-e716WX9uOM15skXkaBcu8orJ0Fho0UFHhU5I3RpalMDqkrIGlVRoPeUmsbGOSwaWYEEuWR3s-4pDB_n5MUehnNIZqKV00t54pl_UKXSYGBCwYyqwxBjIG9PoT268GlB2ClWO8dqU6x2itVi4uDMiQnb7yn8Kv9N-gJ4EXiD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038461919</pqid></control><display><type>article</type><title>Feature selection and prediction of small-for-gestational-age infants</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Jianqiang ; Liu, Lu ; Zhou, MengChu ; Yang, Ji-Jiang ; Chen, Shi ; Liu, HuiTing ; Wang, Qing ; Pan, Hui ; Sun, ZhiHua ; Tan, Feng</creator><creatorcontrib>Li, Jianqiang ; Liu, Lu ; Zhou, MengChu ; Yang, Ji-Jiang ; Chen, Shi ; Liu, HuiTing ; Wang, Qing ; Pan, Hui ; Sun, ZhiHua ; Tan, Feng</creatorcontrib><description>The small-for-gestational-age (SGA) condition often causes serious problems. Therefore, identifying the risk factors for SGA is important. Traditional statistical methods such as stepwise logistic regression (LR) have been widely utilized to discover possible risk factors. However, other feature selection methods from machine learning field have rarely been employed for the task. In this paper, a comparison of five feature selection methods from both fields for SGA risk factors analysis is conducted for the first time. To evaluate their performance, four classification algorithms are used to construct SGA prediction models. The evaluation criteria are precision and the area under the receiver operator characteristic curve. Stepwise LR achieves the best performance among the five feature selection methods, because it conducts both a univariate significance test and a model significance test, which make it more suitable for handling the complex relations among features. The top 20 features selected by each feature selection method and the 27 features selected by four or five of them could assist physicians to revise traditional SGA evaluation models. Ensemble method is also exploited to build effective SGA prediction models based on the feature subsets, which is indeed superior compared with the individual ones shown in the results.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-018-0892-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Birth weight ; Breast cancer ; Cognitive development ; Computational Intelligence ; Engineering ; Feature selection ; Gestational age ; Glaucoma ; Hyperlipidemia ; Hypertension ; Machine learning ; Medical research ; Methods ; Model testing ; Mortality ; Original Research ; Performance evaluation ; Prediction models ; Pregnancy ; Risk analysis ; Risk factors ; Robotics and Automation ; Statistical analysis ; Statistical methods ; Stillbirth ; User Interfaces and Human Computer Interaction</subject><ispartof>Journal of ambient intelligence and humanized computing, 2024-03, Vol.15 (3), p.1881-1895</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2592-ee0e56abf4a3142d60b1f24ea90689c9c124b03c24772ffe47762daa27d3b1313</citedby><cites>FETCH-LOGICAL-c2592-ee0e56abf4a3142d60b1f24ea90689c9c124b03c24772ffe47762daa27d3b1313</cites><orcidid>0000-0002-7776-3984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-018-0892-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12652-018-0892-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Li, Jianqiang</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Zhou, MengChu</creatorcontrib><creatorcontrib>Yang, Ji-Jiang</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Liu, HuiTing</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Pan, Hui</creatorcontrib><creatorcontrib>Sun, ZhiHua</creatorcontrib><creatorcontrib>Tan, Feng</creatorcontrib><title>Feature selection and prediction of small-for-gestational-age infants</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>The small-for-gestational-age (SGA) condition often causes serious problems. Therefore, identifying the risk factors for SGA is important. Traditional statistical methods such as stepwise logistic regression (LR) have been widely utilized to discover possible risk factors. However, other feature selection methods from machine learning field have rarely been employed for the task. In this paper, a comparison of five feature selection methods from both fields for SGA risk factors analysis is conducted for the first time. To evaluate their performance, four classification algorithms are used to construct SGA prediction models. The evaluation criteria are precision and the area under the receiver operator characteristic curve. Stepwise LR achieves the best performance among the five feature selection methods, because it conducts both a univariate significance test and a model significance test, which make it more suitable for handling the complex relations among features. The top 20 features selected by each feature selection method and the 27 features selected by four or five of them could assist physicians to revise traditional SGA evaluation models. Ensemble method is also exploited to build effective SGA prediction models based on the feature subsets, which is indeed superior compared with the individual ones shown in the results.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Birth weight</subject><subject>Breast cancer</subject><subject>Cognitive development</subject><subject>Computational Intelligence</subject><subject>Engineering</subject><subject>Feature selection</subject><subject>Gestational age</subject><subject>Glaucoma</subject><subject>Hyperlipidemia</subject><subject>Hypertension</subject><subject>Machine learning</subject><subject>Medical research</subject><subject>Methods</subject><subject>Model testing</subject><subject>Mortality</subject><subject>Original Research</subject><subject>Performance evaluation</subject><subject>Prediction models</subject><subject>Pregnancy</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Robotics and Automation</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stillbirth</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLgsu4P8FbwHM1M0rQ5yrKrwoIXPYe0nSxduu2adA_-e1MqehLnMh-893jzGLsFcQ9CFA8RUOfIBZRclAY5XrAFlLrkOaj88meWxTVbxXgQqaSRALBgmy258Rwoi9RRPbZDn7m-yU6BmnZeB5_Fo-s67ofA9xRHN51dx92esrb3rh_jDbvyrou0-u5L9r7dvK2f-e716WX9uOM15skXkaBcu8orJ0Fho0UFHhU5I3RpalMDqkrIGlVRoPeUmsbGOSwaWYEEuWR3s-4pDB_n5MUehnNIZqKV00t54pl_UKXSYGBCwYyqwxBjIG9PoT268GlB2ClWO8dqU6x2itVi4uDMiQnb7yn8Kv9N-gJ4EXiD</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Li, Jianqiang</creator><creator>Liu, Lu</creator><creator>Zhou, MengChu</creator><creator>Yang, Ji-Jiang</creator><creator>Chen, Shi</creator><creator>Liu, HuiTing</creator><creator>Wang, Qing</creator><creator>Pan, Hui</creator><creator>Sun, ZhiHua</creator><creator>Tan, Feng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-7776-3984</orcidid></search><sort><creationdate>20240301</creationdate><title>Feature selection and prediction of small-for-gestational-age infants</title><author>Li, Jianqiang ; Liu, Lu ; Zhou, MengChu ; Yang, Ji-Jiang ; Chen, Shi ; Liu, HuiTing ; Wang, Qing ; Pan, Hui ; Sun, ZhiHua ; Tan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2592-ee0e56abf4a3142d60b1f24ea90689c9c124b03c24772ffe47762daa27d3b1313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Birth weight</topic><topic>Breast cancer</topic><topic>Cognitive development</topic><topic>Computational Intelligence</topic><topic>Engineering</topic><topic>Feature selection</topic><topic>Gestational age</topic><topic>Glaucoma</topic><topic>Hyperlipidemia</topic><topic>Hypertension</topic><topic>Machine learning</topic><topic>Medical research</topic><topic>Methods</topic><topic>Model testing</topic><topic>Mortality</topic><topic>Original Research</topic><topic>Performance evaluation</topic><topic>Prediction models</topic><topic>Pregnancy</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Robotics and Automation</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stillbirth</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jianqiang</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Zhou, MengChu</creatorcontrib><creatorcontrib>Yang, Ji-Jiang</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Liu, HuiTing</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Pan, Hui</creatorcontrib><creatorcontrib>Sun, ZhiHua</creatorcontrib><creatorcontrib>Tan, Feng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jianqiang</au><au>Liu, Lu</au><au>Zhou, MengChu</au><au>Yang, Ji-Jiang</au><au>Chen, Shi</au><au>Liu, HuiTing</au><au>Wang, Qing</au><au>Pan, Hui</au><au>Sun, ZhiHua</au><au>Tan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature selection and prediction of small-for-gestational-age infants</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>1881</spage><epage>1895</epage><pages>1881-1895</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>The small-for-gestational-age (SGA) condition often causes serious problems. Therefore, identifying the risk factors for SGA is important. Traditional statistical methods such as stepwise logistic regression (LR) have been widely utilized to discover possible risk factors. However, other feature selection methods from machine learning field have rarely been employed for the task. In this paper, a comparison of five feature selection methods from both fields for SGA risk factors analysis is conducted for the first time. To evaluate their performance, four classification algorithms are used to construct SGA prediction models. The evaluation criteria are precision and the area under the receiver operator characteristic curve. Stepwise LR achieves the best performance among the five feature selection methods, because it conducts both a univariate significance test and a model significance test, which make it more suitable for handling the complex relations among features. The top 20 features selected by each feature selection method and the 27 features selected by four or five of them could assist physicians to revise traditional SGA evaluation models. Ensemble method is also exploited to build effective SGA prediction models based on the feature subsets, which is indeed superior compared with the individual ones shown in the results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-018-0892-2</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7776-3984</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-5137
ispartof Journal of ambient intelligence and humanized computing, 2024-03, Vol.15 (3), p.1881-1895
issn 1868-5137
1868-5145
language eng
recordid cdi_proquest_journals_3039357729
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Birth weight
Breast cancer
Cognitive development
Computational Intelligence
Engineering
Feature selection
Gestational age
Glaucoma
Hyperlipidemia
Hypertension
Machine learning
Medical research
Methods
Model testing
Mortality
Original Research
Performance evaluation
Prediction models
Pregnancy
Risk analysis
Risk factors
Robotics and Automation
Statistical analysis
Statistical methods
Stillbirth
User Interfaces and Human Computer Interaction
title Feature selection and prediction of small-for-gestational-age infants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20selection%20and%20prediction%20of%20small-for-gestational-age%20infants&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Li,%20Jianqiang&rft.date=2024-03-01&rft.volume=15&rft.issue=3&rft.spage=1881&rft.epage=1895&rft.pages=1881-1895&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-018-0892-2&rft_dat=%3Cproquest_cross%3E3039357729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038461919&rft_id=info:pmid/&rfr_iscdi=true