Feature selection and prediction of small-for-gestational-age infants
The small-for-gestational-age (SGA) condition often causes serious problems. Therefore, identifying the risk factors for SGA is important. Traditional statistical methods such as stepwise logistic regression (LR) have been widely utilized to discover possible risk factors. However, other feature sel...
Gespeichert in:
Veröffentlicht in: | Journal of ambient intelligence and humanized computing 2024-03, Vol.15 (3), p.1881-1895 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1895 |
---|---|
container_issue | 3 |
container_start_page | 1881 |
container_title | Journal of ambient intelligence and humanized computing |
container_volume | 15 |
creator | Li, Jianqiang Liu, Lu Zhou, MengChu Yang, Ji-Jiang Chen, Shi Liu, HuiTing Wang, Qing Pan, Hui Sun, ZhiHua Tan, Feng |
description | The small-for-gestational-age (SGA) condition often causes serious problems. Therefore, identifying the risk factors for SGA is important. Traditional statistical methods such as stepwise logistic regression (LR) have been widely utilized to discover possible risk factors. However, other feature selection methods from machine learning field have rarely been employed for the task. In this paper, a comparison of five feature selection methods from both fields for SGA risk factors analysis is conducted for the first time. To evaluate their performance, four classification algorithms are used to construct SGA prediction models. The evaluation criteria are precision and the area under the receiver operator characteristic curve. Stepwise LR achieves the best performance among the five feature selection methods, because it conducts both a univariate significance test and a model significance test, which make it more suitable for handling the complex relations among features. The top 20 features selected by each feature selection method and the 27 features selected by four or five of them could assist physicians to revise traditional SGA evaluation models. Ensemble method is also exploited to build effective SGA prediction models based on the feature subsets, which is indeed superior compared with the individual ones shown in the results. |
doi_str_mv | 10.1007/s12652-018-0892-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039357729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039357729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2592-ee0e56abf4a3142d60b1f24ea90689c9c124b03c24772ffe47762daa27d3b1313</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLgsu4P8FbwHM1M0rQ5yrKrwoIXPYe0nSxduu2adA_-e1MqehLnMh-893jzGLsFcQ9CFA8RUOfIBZRclAY5XrAFlLrkOaj88meWxTVbxXgQqaSRALBgmy258Rwoi9RRPbZDn7m-yU6BmnZeB5_Fo-s67ofA9xRHN51dx92esrb3rh_jDbvyrou0-u5L9r7dvK2f-e716WX9uOM15skXkaBcu8orJ0Fho0UFHhU5I3RpalMDqkrIGlVRoPeUmsbGOSwaWYEEuWR3s-4pDB_n5MUehnNIZqKV00t54pl_UKXSYGBCwYyqwxBjIG9PoT268GlB2ClWO8dqU6x2itVi4uDMiQnb7yn8Kv9N-gJ4EXiD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038461919</pqid></control><display><type>article</type><title>Feature selection and prediction of small-for-gestational-age infants</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Jianqiang ; Liu, Lu ; Zhou, MengChu ; Yang, Ji-Jiang ; Chen, Shi ; Liu, HuiTing ; Wang, Qing ; Pan, Hui ; Sun, ZhiHua ; Tan, Feng</creator><creatorcontrib>Li, Jianqiang ; Liu, Lu ; Zhou, MengChu ; Yang, Ji-Jiang ; Chen, Shi ; Liu, HuiTing ; Wang, Qing ; Pan, Hui ; Sun, ZhiHua ; Tan, Feng</creatorcontrib><description>The small-for-gestational-age (SGA) condition often causes serious problems. Therefore, identifying the risk factors for SGA is important. Traditional statistical methods such as stepwise logistic regression (LR) have been widely utilized to discover possible risk factors. However, other feature selection methods from machine learning field have rarely been employed for the task. In this paper, a comparison of five feature selection methods from both fields for SGA risk factors analysis is conducted for the first time. To evaluate their performance, four classification algorithms are used to construct SGA prediction models. The evaluation criteria are precision and the area under the receiver operator characteristic curve. Stepwise LR achieves the best performance among the five feature selection methods, because it conducts both a univariate significance test and a model significance test, which make it more suitable for handling the complex relations among features. The top 20 features selected by each feature selection method and the 27 features selected by four or five of them could assist physicians to revise traditional SGA evaluation models. Ensemble method is also exploited to build effective SGA prediction models based on the feature subsets, which is indeed superior compared with the individual ones shown in the results.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-018-0892-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Birth weight ; Breast cancer ; Cognitive development ; Computational Intelligence ; Engineering ; Feature selection ; Gestational age ; Glaucoma ; Hyperlipidemia ; Hypertension ; Machine learning ; Medical research ; Methods ; Model testing ; Mortality ; Original Research ; Performance evaluation ; Prediction models ; Pregnancy ; Risk analysis ; Risk factors ; Robotics and Automation ; Statistical analysis ; Statistical methods ; Stillbirth ; User Interfaces and Human Computer Interaction</subject><ispartof>Journal of ambient intelligence and humanized computing, 2024-03, Vol.15 (3), p.1881-1895</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2592-ee0e56abf4a3142d60b1f24ea90689c9c124b03c24772ffe47762daa27d3b1313</citedby><cites>FETCH-LOGICAL-c2592-ee0e56abf4a3142d60b1f24ea90689c9c124b03c24772ffe47762daa27d3b1313</cites><orcidid>0000-0002-7776-3984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-018-0892-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12652-018-0892-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Li, Jianqiang</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Zhou, MengChu</creatorcontrib><creatorcontrib>Yang, Ji-Jiang</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Liu, HuiTing</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Pan, Hui</creatorcontrib><creatorcontrib>Sun, ZhiHua</creatorcontrib><creatorcontrib>Tan, Feng</creatorcontrib><title>Feature selection and prediction of small-for-gestational-age infants</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>The small-for-gestational-age (SGA) condition often causes serious problems. Therefore, identifying the risk factors for SGA is important. Traditional statistical methods such as stepwise logistic regression (LR) have been widely utilized to discover possible risk factors. However, other feature selection methods from machine learning field have rarely been employed for the task. In this paper, a comparison of five feature selection methods from both fields for SGA risk factors analysis is conducted for the first time. To evaluate their performance, four classification algorithms are used to construct SGA prediction models. The evaluation criteria are precision and the area under the receiver operator characteristic curve. Stepwise LR achieves the best performance among the five feature selection methods, because it conducts both a univariate significance test and a model significance test, which make it more suitable for handling the complex relations among features. The top 20 features selected by each feature selection method and the 27 features selected by four or five of them could assist physicians to revise traditional SGA evaluation models. Ensemble method is also exploited to build effective SGA prediction models based on the feature subsets, which is indeed superior compared with the individual ones shown in the results.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Birth weight</subject><subject>Breast cancer</subject><subject>Cognitive development</subject><subject>Computational Intelligence</subject><subject>Engineering</subject><subject>Feature selection</subject><subject>Gestational age</subject><subject>Glaucoma</subject><subject>Hyperlipidemia</subject><subject>Hypertension</subject><subject>Machine learning</subject><subject>Medical research</subject><subject>Methods</subject><subject>Model testing</subject><subject>Mortality</subject><subject>Original Research</subject><subject>Performance evaluation</subject><subject>Prediction models</subject><subject>Pregnancy</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Robotics and Automation</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stillbirth</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLgsu4P8FbwHM1M0rQ5yrKrwoIXPYe0nSxduu2adA_-e1MqehLnMh-893jzGLsFcQ9CFA8RUOfIBZRclAY5XrAFlLrkOaj88meWxTVbxXgQqaSRALBgmy258Rwoi9RRPbZDn7m-yU6BmnZeB5_Fo-s67ofA9xRHN51dx92esrb3rh_jDbvyrou0-u5L9r7dvK2f-e716WX9uOM15skXkaBcu8orJ0Fho0UFHhU5I3RpalMDqkrIGlVRoPeUmsbGOSwaWYEEuWR3s-4pDB_n5MUehnNIZqKV00t54pl_UKXSYGBCwYyqwxBjIG9PoT268GlB2ClWO8dqU6x2itVi4uDMiQnb7yn8Kv9N-gJ4EXiD</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Li, Jianqiang</creator><creator>Liu, Lu</creator><creator>Zhou, MengChu</creator><creator>Yang, Ji-Jiang</creator><creator>Chen, Shi</creator><creator>Liu, HuiTing</creator><creator>Wang, Qing</creator><creator>Pan, Hui</creator><creator>Sun, ZhiHua</creator><creator>Tan, Feng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-7776-3984</orcidid></search><sort><creationdate>20240301</creationdate><title>Feature selection and prediction of small-for-gestational-age infants</title><author>Li, Jianqiang ; Liu, Lu ; Zhou, MengChu ; Yang, Ji-Jiang ; Chen, Shi ; Liu, HuiTing ; Wang, Qing ; Pan, Hui ; Sun, ZhiHua ; Tan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2592-ee0e56abf4a3142d60b1f24ea90689c9c124b03c24772ffe47762daa27d3b1313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Birth weight</topic><topic>Breast cancer</topic><topic>Cognitive development</topic><topic>Computational Intelligence</topic><topic>Engineering</topic><topic>Feature selection</topic><topic>Gestational age</topic><topic>Glaucoma</topic><topic>Hyperlipidemia</topic><topic>Hypertension</topic><topic>Machine learning</topic><topic>Medical research</topic><topic>Methods</topic><topic>Model testing</topic><topic>Mortality</topic><topic>Original Research</topic><topic>Performance evaluation</topic><topic>Prediction models</topic><topic>Pregnancy</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Robotics and Automation</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stillbirth</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jianqiang</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Zhou, MengChu</creatorcontrib><creatorcontrib>Yang, Ji-Jiang</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Liu, HuiTing</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Pan, Hui</creatorcontrib><creatorcontrib>Sun, ZhiHua</creatorcontrib><creatorcontrib>Tan, Feng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jianqiang</au><au>Liu, Lu</au><au>Zhou, MengChu</au><au>Yang, Ji-Jiang</au><au>Chen, Shi</au><au>Liu, HuiTing</au><au>Wang, Qing</au><au>Pan, Hui</au><au>Sun, ZhiHua</au><au>Tan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature selection and prediction of small-for-gestational-age infants</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>1881</spage><epage>1895</epage><pages>1881-1895</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>The small-for-gestational-age (SGA) condition often causes serious problems. Therefore, identifying the risk factors for SGA is important. Traditional statistical methods such as stepwise logistic regression (LR) have been widely utilized to discover possible risk factors. However, other feature selection methods from machine learning field have rarely been employed for the task. In this paper, a comparison of five feature selection methods from both fields for SGA risk factors analysis is conducted for the first time. To evaluate their performance, four classification algorithms are used to construct SGA prediction models. The evaluation criteria are precision and the area under the receiver operator characteristic curve. Stepwise LR achieves the best performance among the five feature selection methods, because it conducts both a univariate significance test and a model significance test, which make it more suitable for handling the complex relations among features. The top 20 features selected by each feature selection method and the 27 features selected by four or five of them could assist physicians to revise traditional SGA evaluation models. Ensemble method is also exploited to build effective SGA prediction models based on the feature subsets, which is indeed superior compared with the individual ones shown in the results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-018-0892-2</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7776-3984</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-5137 |
ispartof | Journal of ambient intelligence and humanized computing, 2024-03, Vol.15 (3), p.1881-1895 |
issn | 1868-5137 1868-5145 |
language | eng |
recordid | cdi_proquest_journals_3039357729 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Birth weight Breast cancer Cognitive development Computational Intelligence Engineering Feature selection Gestational age Glaucoma Hyperlipidemia Hypertension Machine learning Medical research Methods Model testing Mortality Original Research Performance evaluation Prediction models Pregnancy Risk analysis Risk factors Robotics and Automation Statistical analysis Statistical methods Stillbirth User Interfaces and Human Computer Interaction |
title | Feature selection and prediction of small-for-gestational-age infants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20selection%20and%20prediction%20of%20small-for-gestational-age%20infants&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Li,%20Jianqiang&rft.date=2024-03-01&rft.volume=15&rft.issue=3&rft.spage=1881&rft.epage=1895&rft.pages=1881-1895&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-018-0892-2&rft_dat=%3Cproquest_cross%3E3039357729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038461919&rft_id=info:pmid/&rfr_iscdi=true |