Modeling the Link Between Air Convection and the Occurrence of Short‐Term Permafrost in a Low‐Altitude Cold Talus Slope
ABSTRACT We extend a numerical modeling approach developed to explicitly model convective heat transfer in periglacial landforms to represent the ground thermal regime of low‐altitude talus slopes. Our model solves for heat conduction and accounts explicitly for air convection adopting a Darcy term...
Gespeichert in:
Veröffentlicht in: | Permafrost and periglacial processes 2024-04, Vol.35 (2), p.202-217 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 217 |
---|---|
container_issue | 2 |
container_start_page | 202 |
container_title | Permafrost and periglacial processes |
container_volume | 35 |
creator | Wicky, Jonas Hilbich, Christin Delaloye, Reynald Hauck, Christian |
description | ABSTRACT
We extend a numerical modeling approach developed to explicitly model convective heat transfer in periglacial landforms to represent the ground thermal regime of low‐altitude talus slopes. Our model solves for heat conduction and accounts explicitly for air convection adopting a Darcy term with a Boussinesq approximation for air circulation in the porous ground. Numerical model experiments for the low‐altitude talus slope Dreveneuse, Switzerland, confirm that air convection is the key to forming and maintaining ground ice. In the model, the porous talus slope is underlain by a layer of water‐bearing morainic material. In years, where the gradient between air and talus temperature is sufficiently large to result in increased convection and therefore cooling, ground ice forms due to air convection within the porous material and lasts for more than a year. It is only by considering convection that the model is able to represent the occurrences of ground ice, in accordance with temperature observations on‐site. These findings are important, as they confirm that ground ice can be formed and maintained in landforms with a mean annual air temperature > 0°C if ground air convection is present combined with the presence of water. |
doi_str_mv | 10.1002/ppp.2224 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039175798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039175798</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3114-38ea771d477d9adaa556020016417778a3753e4cb395b950d401928574d04e8f3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhSMEEqUgcQRLbNikjGO7Tpal4k8KaqWWdeTGE-qSxsFJqCo2HIEzchLcli2bmZHmm_c0LwguKQwoQHRT1_UgiiJ-FPQoJElIBYPj3cxFOJQcToOzplkBQMwo7wWfz1ZjaapX0i6RpKZ6I7fYbhArMjKOjG31gXlrbEVUpffMJM8757DKkdiCzJbWtT9f33N0azL1RRXONi0x_oCkduNXo7I1bafRi5WazFXZNWRW2hrPg5NClQ1e_PV-8HJ_Nx8_hunk4Wk8SkPFKOUhi1FJSTWXUidKKyXEECIAOuRUShkrJgVDni9YIhaJAM2BJlEsJNfAMS5YP7g66NbOvnfYtNnKdq7ylhkDllApZBJ76vpA5f6BxmGR1c6sldtmFLJdtJmPNttF69HwgG5Midt_uWw6ne75Xx38etg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039175798</pqid></control><display><type>article</type><title>Modeling the Link Between Air Convection and the Occurrence of Short‐Term Permafrost in a Low‐Altitude Cold Talus Slope</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wicky, Jonas ; Hilbich, Christin ; Delaloye, Reynald ; Hauck, Christian</creator><creatorcontrib>Wicky, Jonas ; Hilbich, Christin ; Delaloye, Reynald ; Hauck, Christian</creatorcontrib><description>ABSTRACT
We extend a numerical modeling approach developed to explicitly model convective heat transfer in periglacial landforms to represent the ground thermal regime of low‐altitude talus slopes. Our model solves for heat conduction and accounts explicitly for air convection adopting a Darcy term with a Boussinesq approximation for air circulation in the porous ground. Numerical model experiments for the low‐altitude talus slope Dreveneuse, Switzerland, confirm that air convection is the key to forming and maintaining ground ice. In the model, the porous talus slope is underlain by a layer of water‐bearing morainic material. In years, where the gradient between air and talus temperature is sufficiently large to result in increased convection and therefore cooling, ground ice forms due to air convection within the porous material and lasts for more than a year. It is only by considering convection that the model is able to represent the occurrences of ground ice, in accordance with temperature observations on‐site. These findings are important, as they confirm that ground ice can be formed and maintained in landforms with a mean annual air temperature > 0°C if ground air convection is present combined with the presence of water.</description><identifier>ISSN: 1045-6740</identifier><identifier>EISSN: 1099-1530</identifier><identifier>DOI: 10.1002/ppp.2224</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Air circulation ; Air flow ; Air temperature ; Altitude ; Annual temperatures ; Approximation ; Boussinesq approximation ; Brittleness ; Conduction heating ; Conductive heat transfer ; Convection ; Convection cooling ; Convective heat transfer ; Ground ice ; Heat conduction ; Heat transfer ; Ice ; Ice formation ; Landforms ; Mathematical models ; Modelling ; numerical modeling ; Numerical models ; periglacial landform ; Permafrost ; Porous materials ; Slope ; Slopes ; talus slope</subject><ispartof>Permafrost and periglacial processes, 2024-04, Vol.35 (2), p.202-217</ispartof><rights>2024 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a3114-38ea771d477d9adaa556020016417778a3753e4cb395b950d401928574d04e8f3</cites><orcidid>0000-0003-4488-6475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppp.2224$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppp.2224$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wicky, Jonas</creatorcontrib><creatorcontrib>Hilbich, Christin</creatorcontrib><creatorcontrib>Delaloye, Reynald</creatorcontrib><creatorcontrib>Hauck, Christian</creatorcontrib><title>Modeling the Link Between Air Convection and the Occurrence of Short‐Term Permafrost in a Low‐Altitude Cold Talus Slope</title><title>Permafrost and periglacial processes</title><description>ABSTRACT
We extend a numerical modeling approach developed to explicitly model convective heat transfer in periglacial landforms to represent the ground thermal regime of low‐altitude talus slopes. Our model solves for heat conduction and accounts explicitly for air convection adopting a Darcy term with a Boussinesq approximation for air circulation in the porous ground. Numerical model experiments for the low‐altitude talus slope Dreveneuse, Switzerland, confirm that air convection is the key to forming and maintaining ground ice. In the model, the porous talus slope is underlain by a layer of water‐bearing morainic material. In years, where the gradient between air and talus temperature is sufficiently large to result in increased convection and therefore cooling, ground ice forms due to air convection within the porous material and lasts for more than a year. It is only by considering convection that the model is able to represent the occurrences of ground ice, in accordance with temperature observations on‐site. These findings are important, as they confirm that ground ice can be formed and maintained in landforms with a mean annual air temperature > 0°C if ground air convection is present combined with the presence of water.</description><subject>Air circulation</subject><subject>Air flow</subject><subject>Air temperature</subject><subject>Altitude</subject><subject>Annual temperatures</subject><subject>Approximation</subject><subject>Boussinesq approximation</subject><subject>Brittleness</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Convection</subject><subject>Convection cooling</subject><subject>Convective heat transfer</subject><subject>Ground ice</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>Ice</subject><subject>Ice formation</subject><subject>Landforms</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>numerical modeling</subject><subject>Numerical models</subject><subject>periglacial landform</subject><subject>Permafrost</subject><subject>Porous materials</subject><subject>Slope</subject><subject>Slopes</subject><subject>talus slope</subject><issn>1045-6740</issn><issn>1099-1530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE1OwzAQhSMEEqUgcQRLbNikjGO7Tpal4k8KaqWWdeTGE-qSxsFJqCo2HIEzchLcli2bmZHmm_c0LwguKQwoQHRT1_UgiiJ-FPQoJElIBYPj3cxFOJQcToOzplkBQMwo7wWfz1ZjaapX0i6RpKZ6I7fYbhArMjKOjG31gXlrbEVUpffMJM8757DKkdiCzJbWtT9f33N0azL1RRXONi0x_oCkduNXo7I1bafRi5WazFXZNWRW2hrPg5NClQ1e_PV-8HJ_Nx8_hunk4Wk8SkPFKOUhi1FJSTWXUidKKyXEECIAOuRUShkrJgVDni9YIhaJAM2BJlEsJNfAMS5YP7g66NbOvnfYtNnKdq7ylhkDllApZBJ76vpA5f6BxmGR1c6sldtmFLJdtJmPNttF69HwgG5Midt_uWw6ne75Xx38etg</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Wicky, Jonas</creator><creator>Hilbich, Christin</creator><creator>Delaloye, Reynald</creator><creator>Hauck, Christian</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-4488-6475</orcidid></search><sort><creationdate>202404</creationdate><title>Modeling the Link Between Air Convection and the Occurrence of Short‐Term Permafrost in a Low‐Altitude Cold Talus Slope</title><author>Wicky, Jonas ; Hilbich, Christin ; Delaloye, Reynald ; Hauck, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3114-38ea771d477d9adaa556020016417778a3753e4cb395b950d401928574d04e8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air circulation</topic><topic>Air flow</topic><topic>Air temperature</topic><topic>Altitude</topic><topic>Annual temperatures</topic><topic>Approximation</topic><topic>Boussinesq approximation</topic><topic>Brittleness</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Convection</topic><topic>Convection cooling</topic><topic>Convective heat transfer</topic><topic>Ground ice</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>Ice</topic><topic>Ice formation</topic><topic>Landforms</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>numerical modeling</topic><topic>Numerical models</topic><topic>periglacial landform</topic><topic>Permafrost</topic><topic>Porous materials</topic><topic>Slope</topic><topic>Slopes</topic><topic>talus slope</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wicky, Jonas</creatorcontrib><creatorcontrib>Hilbich, Christin</creatorcontrib><creatorcontrib>Delaloye, Reynald</creatorcontrib><creatorcontrib>Hauck, Christian</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Permafrost and periglacial processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wicky, Jonas</au><au>Hilbich, Christin</au><au>Delaloye, Reynald</au><au>Hauck, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Link Between Air Convection and the Occurrence of Short‐Term Permafrost in a Low‐Altitude Cold Talus Slope</atitle><jtitle>Permafrost and periglacial processes</jtitle><date>2024-04</date><risdate>2024</risdate><volume>35</volume><issue>2</issue><spage>202</spage><epage>217</epage><pages>202-217</pages><issn>1045-6740</issn><eissn>1099-1530</eissn><abstract>ABSTRACT
We extend a numerical modeling approach developed to explicitly model convective heat transfer in periglacial landforms to represent the ground thermal regime of low‐altitude talus slopes. Our model solves for heat conduction and accounts explicitly for air convection adopting a Darcy term with a Boussinesq approximation for air circulation in the porous ground. Numerical model experiments for the low‐altitude talus slope Dreveneuse, Switzerland, confirm that air convection is the key to forming and maintaining ground ice. In the model, the porous talus slope is underlain by a layer of water‐bearing morainic material. In years, where the gradient between air and talus temperature is sufficiently large to result in increased convection and therefore cooling, ground ice forms due to air convection within the porous material and lasts for more than a year. It is only by considering convection that the model is able to represent the occurrences of ground ice, in accordance with temperature observations on‐site. These findings are important, as they confirm that ground ice can be formed and maintained in landforms with a mean annual air temperature > 0°C if ground air convection is present combined with the presence of water.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppp.2224</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4488-6475</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-6740 |
ispartof | Permafrost and periglacial processes, 2024-04, Vol.35 (2), p.202-217 |
issn | 1045-6740 1099-1530 |
language | eng |
recordid | cdi_proquest_journals_3039175798 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Air circulation Air flow Air temperature Altitude Annual temperatures Approximation Boussinesq approximation Brittleness Conduction heating Conductive heat transfer Convection Convection cooling Convective heat transfer Ground ice Heat conduction Heat transfer Ice Ice formation Landforms Mathematical models Modelling numerical modeling Numerical models periglacial landform Permafrost Porous materials Slope Slopes talus slope |
title | Modeling the Link Between Air Convection and the Occurrence of Short‐Term Permafrost in a Low‐Altitude Cold Talus Slope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Link%20Between%20Air%20Convection%20and%20the%20Occurrence%20of%20Short%E2%80%90Term%20Permafrost%20in%20a%20Low%E2%80%90Altitude%20Cold%20Talus%20Slope&rft.jtitle=Permafrost%20and%20periglacial%20processes&rft.au=Wicky,%20Jonas&rft.date=2024-04&rft.volume=35&rft.issue=2&rft.spage=202&rft.epage=217&rft.pages=202-217&rft.issn=1045-6740&rft.eissn=1099-1530&rft_id=info:doi/10.1002/ppp.2224&rft_dat=%3Cproquest_cross%3E3039175798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039175798&rft_id=info:pmid/&rfr_iscdi=true |