Algorithms and complexity for the almost equal maximum flow problem
In the equal maximum flow problem (EMFP), we aim for a maximum flow where we require the same flow value on all arcs in some given subsets of the arc set, so called homologous arc sets. In this article, we study the closely related almost equal maximum flow problems (AEMFP) where the flow values on...
Gespeichert in:
Veröffentlicht in: | Networks 2024-06, Vol.83 (4), p.642-652 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 652 |
---|---|
container_issue | 4 |
container_start_page | 642 |
container_title | Networks |
container_volume | 83 |
creator | Haese, Rebekka Heller, Till Krumke, Sven O. |
description | In the equal maximum flow problem (EMFP), we aim for a maximum flow where we require the same flow value on all arcs in some given subsets of the arc set, so called homologous arc sets. In this article, we study the closely related almost equal maximum flow problems (AEMFP) where the flow values on arcs of one homologous arc set differ at most by the valuation of a so called deviation function . We prove that the integer AEMFP is in general ‐complete, and show that even the problem of finding a fractional maximum flow in the case of convex deviation functions is also ‐complete. This is in contrast to the EMFP, which is polynomial time solvable in the fractional case. Additionally, we provide inapproximability results for the integral AEMFP. For the (fractional) concave AEMFP we state a strongly polynomial algorithm for the linear and concave piecewise polynomial deviation function case for a fixed number of homologous sets using a parametric search approach. |
doi_str_mv | 10.1002/net.22209 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039045022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039045022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-25d98072bc6cdafca7de54e871a1ac66e303a1d83600f7684f83cf1df1d381c13</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKsHv0HAk4fVmaS7mz2W4j8oeNFzSLOJ3ZI0bZLF9tsbrTDwDvPmPeZHyC3CAwKwx63JD4wx6M7IBKFrKwDenpNJ2YmKw6y-JFcpbQAQaxQTspi7rxCHvPaJqm1PdfA7Zw5DPlIbIs1rQ5XzIWVq9qNy1KvD4EdPrQvfdBfDyhl_TS6scsnc_OuUfD4_fSxeq-X7y9tivqw0q1muWN13Alq20o3uldWq7U09M6JFhUo3jeHAFfaCNwC2bcTMCq4t9mW4QI18Su5OuaV3P5qU5SaMcVsqZTntynPAWHHdn1w6hpSisXIXB6_iUSLIX0ayMJJ_jPgPjxNZoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039045022</pqid></control><display><type>article</type><title>Algorithms and complexity for the almost equal maximum flow problem</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Haese, Rebekka ; Heller, Till ; Krumke, Sven O.</creator><creatorcontrib>Haese, Rebekka ; Heller, Till ; Krumke, Sven O.</creatorcontrib><description>In the equal maximum flow problem (EMFP), we aim for a maximum flow where we require the same flow value on all arcs in some given subsets of the arc set, so called homologous arc sets. In this article, we study the closely related almost equal maximum flow problems (AEMFP) where the flow values on arcs of one homologous arc set differ at most by the valuation of a so called deviation function . We prove that the integer AEMFP is in general ‐complete, and show that even the problem of finding a fractional maximum flow in the case of convex deviation functions is also ‐complete. This is in contrast to the EMFP, which is polynomial time solvable in the fractional case. Additionally, we provide inapproximability results for the integral AEMFP. For the (fractional) concave AEMFP we state a strongly polynomial algorithm for the linear and concave piecewise polynomial deviation function case for a fixed number of homologous sets using a parametric search approach.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.22209</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Deviation ; Homology ; Mathematical analysis ; Polynomials</subject><ispartof>Networks, 2024-06, Vol.83 (4), p.642-652</ispartof><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-25d98072bc6cdafca7de54e871a1ac66e303a1d83600f7684f83cf1df1d381c13</cites><orcidid>0000-0002-8227-9353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Haese, Rebekka</creatorcontrib><creatorcontrib>Heller, Till</creatorcontrib><creatorcontrib>Krumke, Sven O.</creatorcontrib><title>Algorithms and complexity for the almost equal maximum flow problem</title><title>Networks</title><description>In the equal maximum flow problem (EMFP), we aim for a maximum flow where we require the same flow value on all arcs in some given subsets of the arc set, so called homologous arc sets. In this article, we study the closely related almost equal maximum flow problems (AEMFP) where the flow values on arcs of one homologous arc set differ at most by the valuation of a so called deviation function . We prove that the integer AEMFP is in general ‐complete, and show that even the problem of finding a fractional maximum flow in the case of convex deviation functions is also ‐complete. This is in contrast to the EMFP, which is polynomial time solvable in the fractional case. Additionally, we provide inapproximability results for the integral AEMFP. For the (fractional) concave AEMFP we state a strongly polynomial algorithm for the linear and concave piecewise polynomial deviation function case for a fixed number of homologous sets using a parametric search approach.</description><subject>Algorithms</subject><subject>Deviation</subject><subject>Homology</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE9LAzEQxYMoWKsHv0HAk4fVmaS7mz2W4j8oeNFzSLOJ3ZI0bZLF9tsbrTDwDvPmPeZHyC3CAwKwx63JD4wx6M7IBKFrKwDenpNJ2YmKw6y-JFcpbQAQaxQTspi7rxCHvPaJqm1PdfA7Zw5DPlIbIs1rQ5XzIWVq9qNy1KvD4EdPrQvfdBfDyhl_TS6scsnc_OuUfD4_fSxeq-X7y9tivqw0q1muWN13Alq20o3uldWq7U09M6JFhUo3jeHAFfaCNwC2bcTMCq4t9mW4QI18Su5OuaV3P5qU5SaMcVsqZTntynPAWHHdn1w6hpSisXIXB6_iUSLIX0ayMJJ_jPgPjxNZoA</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Haese, Rebekka</creator><creator>Heller, Till</creator><creator>Krumke, Sven O.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8227-9353</orcidid></search><sort><creationdate>202406</creationdate><title>Algorithms and complexity for the almost equal maximum flow problem</title><author>Haese, Rebekka ; Heller, Till ; Krumke, Sven O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-25d98072bc6cdafca7de54e871a1ac66e303a1d83600f7684f83cf1df1d381c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Deviation</topic><topic>Homology</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haese, Rebekka</creatorcontrib><creatorcontrib>Heller, Till</creatorcontrib><creatorcontrib>Krumke, Sven O.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haese, Rebekka</au><au>Heller, Till</au><au>Krumke, Sven O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithms and complexity for the almost equal maximum flow problem</atitle><jtitle>Networks</jtitle><date>2024-06</date><risdate>2024</risdate><volume>83</volume><issue>4</issue><spage>642</spage><epage>652</epage><pages>642-652</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><abstract>In the equal maximum flow problem (EMFP), we aim for a maximum flow where we require the same flow value on all arcs in some given subsets of the arc set, so called homologous arc sets. In this article, we study the closely related almost equal maximum flow problems (AEMFP) where the flow values on arcs of one homologous arc set differ at most by the valuation of a so called deviation function . We prove that the integer AEMFP is in general ‐complete, and show that even the problem of finding a fractional maximum flow in the case of convex deviation functions is also ‐complete. This is in contrast to the EMFP, which is polynomial time solvable in the fractional case. Additionally, we provide inapproximability results for the integral AEMFP. For the (fractional) concave AEMFP we state a strongly polynomial algorithm for the linear and concave piecewise polynomial deviation function case for a fixed number of homologous sets using a parametric search approach.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/net.22209</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8227-9353</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3045 |
ispartof | Networks, 2024-06, Vol.83 (4), p.642-652 |
issn | 0028-3045 1097-0037 |
language | eng |
recordid | cdi_proquest_journals_3039045022 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Deviation Homology Mathematical analysis Polynomials |
title | Algorithms and complexity for the almost equal maximum flow problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithms%20and%20complexity%20for%20the%20almost%20equal%20maximum%20flow%20problem&rft.jtitle=Networks&rft.au=Haese,%20Rebekka&rft.date=2024-06&rft.volume=83&rft.issue=4&rft.spage=642&rft.epage=652&rft.pages=642-652&rft.issn=0028-3045&rft.eissn=1097-0037&rft_id=info:doi/10.1002/net.22209&rft_dat=%3Cproquest_cross%3E3039045022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039045022&rft_id=info:pmid/&rfr_iscdi=true |