Algorithms and complexity for the almost equal maximum flow problem

In the equal maximum flow problem (EMFP), we aim for a maximum flow where we require the same flow value on all arcs in some given subsets of the arc set, so called homologous arc sets. In this article, we study the closely related almost equal maximum flow problems (AEMFP) where the flow values on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks 2024-06, Vol.83 (4), p.642-652
Hauptverfasser: Haese, Rebekka, Heller, Till, Krumke, Sven O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 652
container_issue 4
container_start_page 642
container_title Networks
container_volume 83
creator Haese, Rebekka
Heller, Till
Krumke, Sven O.
description In the equal maximum flow problem (EMFP), we aim for a maximum flow where we require the same flow value on all arcs in some given subsets of the arc set, so called homologous arc sets. In this article, we study the closely related almost equal maximum flow problems (AEMFP) where the flow values on arcs of one homologous arc set differ at most by the valuation of a so called deviation function . We prove that the integer AEMFP is in general ‐complete, and show that even the problem of finding a fractional maximum flow in the case of convex deviation functions is also ‐complete. This is in contrast to the EMFP, which is polynomial time solvable in the fractional case. Additionally, we provide inapproximability results for the integral AEMFP. For the (fractional) concave AEMFP we state a strongly polynomial algorithm for the linear and concave piecewise polynomial deviation function case for a fixed number of homologous sets using a parametric search approach.
doi_str_mv 10.1002/net.22209
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039045022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039045022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-25d98072bc6cdafca7de54e871a1ac66e303a1d83600f7684f83cf1df1d381c13</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKsHv0HAk4fVmaS7mz2W4j8oeNFzSLOJ3ZI0bZLF9tsbrTDwDvPmPeZHyC3CAwKwx63JD4wx6M7IBKFrKwDenpNJ2YmKw6y-JFcpbQAQaxQTspi7rxCHvPaJqm1PdfA7Zw5DPlIbIs1rQ5XzIWVq9qNy1KvD4EdPrQvfdBfDyhl_TS6scsnc_OuUfD4_fSxeq-X7y9tivqw0q1muWN13Alq20o3uldWq7U09M6JFhUo3jeHAFfaCNwC2bcTMCq4t9mW4QI18Su5OuaV3P5qU5SaMcVsqZTntynPAWHHdn1w6hpSisXIXB6_iUSLIX0ayMJJ_jPgPjxNZoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039045022</pqid></control><display><type>article</type><title>Algorithms and complexity for the almost equal maximum flow problem</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Haese, Rebekka ; Heller, Till ; Krumke, Sven O.</creator><creatorcontrib>Haese, Rebekka ; Heller, Till ; Krumke, Sven O.</creatorcontrib><description>In the equal maximum flow problem (EMFP), we aim for a maximum flow where we require the same flow value on all arcs in some given subsets of the arc set, so called homologous arc sets. In this article, we study the closely related almost equal maximum flow problems (AEMFP) where the flow values on arcs of one homologous arc set differ at most by the valuation of a so called deviation function . We prove that the integer AEMFP is in general ‐complete, and show that even the problem of finding a fractional maximum flow in the case of convex deviation functions is also ‐complete. This is in contrast to the EMFP, which is polynomial time solvable in the fractional case. Additionally, we provide inapproximability results for the integral AEMFP. For the (fractional) concave AEMFP we state a strongly polynomial algorithm for the linear and concave piecewise polynomial deviation function case for a fixed number of homologous sets using a parametric search approach.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.22209</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Deviation ; Homology ; Mathematical analysis ; Polynomials</subject><ispartof>Networks, 2024-06, Vol.83 (4), p.642-652</ispartof><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-25d98072bc6cdafca7de54e871a1ac66e303a1d83600f7684f83cf1df1d381c13</cites><orcidid>0000-0002-8227-9353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Haese, Rebekka</creatorcontrib><creatorcontrib>Heller, Till</creatorcontrib><creatorcontrib>Krumke, Sven O.</creatorcontrib><title>Algorithms and complexity for the almost equal maximum flow problem</title><title>Networks</title><description>In the equal maximum flow problem (EMFP), we aim for a maximum flow where we require the same flow value on all arcs in some given subsets of the arc set, so called homologous arc sets. In this article, we study the closely related almost equal maximum flow problems (AEMFP) where the flow values on arcs of one homologous arc set differ at most by the valuation of a so called deviation function . We prove that the integer AEMFP is in general ‐complete, and show that even the problem of finding a fractional maximum flow in the case of convex deviation functions is also ‐complete. This is in contrast to the EMFP, which is polynomial time solvable in the fractional case. Additionally, we provide inapproximability results for the integral AEMFP. For the (fractional) concave AEMFP we state a strongly polynomial algorithm for the linear and concave piecewise polynomial deviation function case for a fixed number of homologous sets using a parametric search approach.</description><subject>Algorithms</subject><subject>Deviation</subject><subject>Homology</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE9LAzEQxYMoWKsHv0HAk4fVmaS7mz2W4j8oeNFzSLOJ3ZI0bZLF9tsbrTDwDvPmPeZHyC3CAwKwx63JD4wx6M7IBKFrKwDenpNJ2YmKw6y-JFcpbQAQaxQTspi7rxCHvPaJqm1PdfA7Zw5DPlIbIs1rQ5XzIWVq9qNy1KvD4EdPrQvfdBfDyhl_TS6scsnc_OuUfD4_fSxeq-X7y9tivqw0q1muWN13Alq20o3uldWq7U09M6JFhUo3jeHAFfaCNwC2bcTMCq4t9mW4QI18Su5OuaV3P5qU5SaMcVsqZTntynPAWHHdn1w6hpSisXIXB6_iUSLIX0ayMJJ_jPgPjxNZoA</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Haese, Rebekka</creator><creator>Heller, Till</creator><creator>Krumke, Sven O.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8227-9353</orcidid></search><sort><creationdate>202406</creationdate><title>Algorithms and complexity for the almost equal maximum flow problem</title><author>Haese, Rebekka ; Heller, Till ; Krumke, Sven O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-25d98072bc6cdafca7de54e871a1ac66e303a1d83600f7684f83cf1df1d381c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Deviation</topic><topic>Homology</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haese, Rebekka</creatorcontrib><creatorcontrib>Heller, Till</creatorcontrib><creatorcontrib>Krumke, Sven O.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haese, Rebekka</au><au>Heller, Till</au><au>Krumke, Sven O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithms and complexity for the almost equal maximum flow problem</atitle><jtitle>Networks</jtitle><date>2024-06</date><risdate>2024</risdate><volume>83</volume><issue>4</issue><spage>642</spage><epage>652</epage><pages>642-652</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><abstract>In the equal maximum flow problem (EMFP), we aim for a maximum flow where we require the same flow value on all arcs in some given subsets of the arc set, so called homologous arc sets. In this article, we study the closely related almost equal maximum flow problems (AEMFP) where the flow values on arcs of one homologous arc set differ at most by the valuation of a so called deviation function . We prove that the integer AEMFP is in general ‐complete, and show that even the problem of finding a fractional maximum flow in the case of convex deviation functions is also ‐complete. This is in contrast to the EMFP, which is polynomial time solvable in the fractional case. Additionally, we provide inapproximability results for the integral AEMFP. For the (fractional) concave AEMFP we state a strongly polynomial algorithm for the linear and concave piecewise polynomial deviation function case for a fixed number of homologous sets using a parametric search approach.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/net.22209</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8227-9353</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-3045
ispartof Networks, 2024-06, Vol.83 (4), p.642-652
issn 0028-3045
1097-0037
language eng
recordid cdi_proquest_journals_3039045022
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Deviation
Homology
Mathematical analysis
Polynomials
title Algorithms and complexity for the almost equal maximum flow problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithms%20and%20complexity%20for%20the%20almost%20equal%20maximum%20flow%20problem&rft.jtitle=Networks&rft.au=Haese,%20Rebekka&rft.date=2024-06&rft.volume=83&rft.issue=4&rft.spage=642&rft.epage=652&rft.pages=642-652&rft.issn=0028-3045&rft.eissn=1097-0037&rft_id=info:doi/10.1002/net.22209&rft_dat=%3Cproquest_cross%3E3039045022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039045022&rft_id=info:pmid/&rfr_iscdi=true