Ionic liquid binary mixtures: Machine learning‐assisted modeling, solvent tailoring, process design, and optimization
This work conducts a comprehensive modeling study on the viscosity, density, heat capacity, and surface tension of ionic liquid (IL)‐IL binary mixtures by combining the group contribution (GC) method with three machine learning algorithms: artificial neural network, XGBoost, and LightGBM. A large nu...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2024-05, Vol.70 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | AIChE journal |
container_volume | 70 |
creator | Chen, Yuqiu Ma, Sulei Lei, Yang Liang, Xiaodong Liu, Xinyan Kontogeorgis, Georgios M. Gani, Rafiqul |
description | This work conducts a comprehensive modeling study on the viscosity, density, heat capacity, and surface tension of ionic liquid (IL)‐IL binary mixtures by combining the group contribution (GC) method with three machine learning algorithms: artificial neural network, XGBoost, and LightGBM. A large number of experimental data from reliable open sources is exhaustively collected to train, validate, and test the proposed ML‐based GC models. Furthermore, the Shapley Additive Explanations technique is employed to quantify the influential factors behind all the studied properties. Finally, these ML‐based GC models are sequentially integrated into computer‐aided mixed solvent design, process design, and optimization through an industrial case study of recovering hydrogen from raw coke oven gas. Optimization results demonstrate their high computational efficiency and integrability in solvent and process design, while also highlighting the significant potential of IL‐IL binary mixtures in practical applications. |
doi_str_mv | 10.1002/aic.18392 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3038639525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3038639525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-9ef0b4272a912e5b4078ab259a49e38e4af2400e9fa81e10d78211bf492120433</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqWw4AaWWCGR1nYSErOrKn4qFbGBteUkkzJVYrd2QikrjsAZOQmmZcvKmk9vxjOPkHPORpwxMdZYjngeS3FABjxNsiiVLD0kA8YYj0LAj8mJ98tQiSwXA7KZWYMlbXDdY0ULNNptaYvvXe_A39BHXb6iAdqAdgbN4vvzS3uPvoOKtraCJmRX1NvmDUxHO42Ndbto5WwJ3tMKPC7MFdWmonbVYYsfukNrTslRrRsPZ3_vkLzc3T5PH6L50_1sOplHpZCZiCTUrEhEJrTkAtIiYVmuC5FKnUiIc0h0LRLGQNY658BZFY7ivKgTKbhgSRwPycV-blho3YPv1NL2zoQvVczi_DqWqUgDdbmnSme9d1CrlcM2qFCcqV-vKnhVO6-BHe_ZDTaw_R9Uk9l03_EDVW97cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038639525</pqid></control><display><type>article</type><title>Ionic liquid binary mixtures: Machine learning‐assisted modeling, solvent tailoring, process design, and optimization</title><source>Wiley Journals</source><creator>Chen, Yuqiu ; Ma, Sulei ; Lei, Yang ; Liang, Xiaodong ; Liu, Xinyan ; Kontogeorgis, Georgios M. ; Gani, Rafiqul</creator><creatorcontrib>Chen, Yuqiu ; Ma, Sulei ; Lei, Yang ; Liang, Xiaodong ; Liu, Xinyan ; Kontogeorgis, Georgios M. ; Gani, Rafiqul</creatorcontrib><description>This work conducts a comprehensive modeling study on the viscosity, density, heat capacity, and surface tension of ionic liquid (IL)‐IL binary mixtures by combining the group contribution (GC) method with three machine learning algorithms: artificial neural network, XGBoost, and LightGBM. A large number of experimental data from reliable open sources is exhaustively collected to train, validate, and test the proposed ML‐based GC models. Furthermore, the Shapley Additive Explanations technique is employed to quantify the influential factors behind all the studied properties. Finally, these ML‐based GC models are sequentially integrated into computer‐aided mixed solvent design, process design, and optimization through an industrial case study of recovering hydrogen from raw coke oven gas. Optimization results demonstrate their high computational efficiency and integrability in solvent and process design, while also highlighting the significant potential of IL‐IL binary mixtures in practical applications.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18392</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Artificial neural networks ; Binary mixtures ; Coke oven gas ; Coke ovens ; Design ; Design optimization ; H2 recovery ; ionic liquid mixtures ; Ionic liquids ; Learning algorithms ; Machine learning ; Modelling ; Neural networks ; property modeling ; solvent tailoring ; Solvents ; Surface tension</subject><ispartof>AIChE journal, 2024-05, Vol.70 (5), p.n/a</ispartof><rights>2024 American Institute of Chemical Engineers.</rights><rights>2024 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-9ef0b4272a912e5b4078ab259a49e38e4af2400e9fa81e10d78211bf492120433</citedby><cites>FETCH-LOGICAL-c2972-9ef0b4272a912e5b4078ab259a49e38e4af2400e9fa81e10d78211bf492120433</cites><orcidid>0000-0002-7128-1511 ; 0000-0002-2007-546X ; 0000-0001-9828-8660 ; 0000-0002-1975-3569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.18392$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.18392$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Chen, Yuqiu</creatorcontrib><creatorcontrib>Ma, Sulei</creatorcontrib><creatorcontrib>Lei, Yang</creatorcontrib><creatorcontrib>Liang, Xiaodong</creatorcontrib><creatorcontrib>Liu, Xinyan</creatorcontrib><creatorcontrib>Kontogeorgis, Georgios M.</creatorcontrib><creatorcontrib>Gani, Rafiqul</creatorcontrib><title>Ionic liquid binary mixtures: Machine learning‐assisted modeling, solvent tailoring, process design, and optimization</title><title>AIChE journal</title><description>This work conducts a comprehensive modeling study on the viscosity, density, heat capacity, and surface tension of ionic liquid (IL)‐IL binary mixtures by combining the group contribution (GC) method with three machine learning algorithms: artificial neural network, XGBoost, and LightGBM. A large number of experimental data from reliable open sources is exhaustively collected to train, validate, and test the proposed ML‐based GC models. Furthermore, the Shapley Additive Explanations technique is employed to quantify the influential factors behind all the studied properties. Finally, these ML‐based GC models are sequentially integrated into computer‐aided mixed solvent design, process design, and optimization through an industrial case study of recovering hydrogen from raw coke oven gas. Optimization results demonstrate their high computational efficiency and integrability in solvent and process design, while also highlighting the significant potential of IL‐IL binary mixtures in practical applications.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Binary mixtures</subject><subject>Coke oven gas</subject><subject>Coke ovens</subject><subject>Design</subject><subject>Design optimization</subject><subject>H2 recovery</subject><subject>ionic liquid mixtures</subject><subject>Ionic liquids</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>property modeling</subject><subject>solvent tailoring</subject><subject>Solvents</subject><subject>Surface tension</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqWw4AaWWCGR1nYSErOrKn4qFbGBteUkkzJVYrd2QikrjsAZOQmmZcvKmk9vxjOPkHPORpwxMdZYjngeS3FABjxNsiiVLD0kA8YYj0LAj8mJ98tQiSwXA7KZWYMlbXDdY0ULNNptaYvvXe_A39BHXb6iAdqAdgbN4vvzS3uPvoOKtraCJmRX1NvmDUxHO42Ndbto5WwJ3tMKPC7MFdWmonbVYYsfukNrTslRrRsPZ3_vkLzc3T5PH6L50_1sOplHpZCZiCTUrEhEJrTkAtIiYVmuC5FKnUiIc0h0LRLGQNY658BZFY7ivKgTKbhgSRwPycV-blho3YPv1NL2zoQvVczi_DqWqUgDdbmnSme9d1CrlcM2qFCcqV-vKnhVO6-BHe_ZDTaw_R9Uk9l03_EDVW97cg</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Chen, Yuqiu</creator><creator>Ma, Sulei</creator><creator>Lei, Yang</creator><creator>Liang, Xiaodong</creator><creator>Liu, Xinyan</creator><creator>Kontogeorgis, Georgios M.</creator><creator>Gani, Rafiqul</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7128-1511</orcidid><orcidid>https://orcid.org/0000-0002-2007-546X</orcidid><orcidid>https://orcid.org/0000-0001-9828-8660</orcidid><orcidid>https://orcid.org/0000-0002-1975-3569</orcidid></search><sort><creationdate>202405</creationdate><title>Ionic liquid binary mixtures: Machine learning‐assisted modeling, solvent tailoring, process design, and optimization</title><author>Chen, Yuqiu ; Ma, Sulei ; Lei, Yang ; Liang, Xiaodong ; Liu, Xinyan ; Kontogeorgis, Georgios M. ; Gani, Rafiqul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-9ef0b4272a912e5b4078ab259a49e38e4af2400e9fa81e10d78211bf492120433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Binary mixtures</topic><topic>Coke oven gas</topic><topic>Coke ovens</topic><topic>Design</topic><topic>Design optimization</topic><topic>H2 recovery</topic><topic>ionic liquid mixtures</topic><topic>Ionic liquids</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>property modeling</topic><topic>solvent tailoring</topic><topic>Solvents</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuqiu</creatorcontrib><creatorcontrib>Ma, Sulei</creatorcontrib><creatorcontrib>Lei, Yang</creatorcontrib><creatorcontrib>Liang, Xiaodong</creatorcontrib><creatorcontrib>Liu, Xinyan</creatorcontrib><creatorcontrib>Kontogeorgis, Georgios M.</creatorcontrib><creatorcontrib>Gani, Rafiqul</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yuqiu</au><au>Ma, Sulei</au><au>Lei, Yang</au><au>Liang, Xiaodong</au><au>Liu, Xinyan</au><au>Kontogeorgis, Georgios M.</au><au>Gani, Rafiqul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic liquid binary mixtures: Machine learning‐assisted modeling, solvent tailoring, process design, and optimization</atitle><jtitle>AIChE journal</jtitle><date>2024-05</date><risdate>2024</risdate><volume>70</volume><issue>5</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>This work conducts a comprehensive modeling study on the viscosity, density, heat capacity, and surface tension of ionic liquid (IL)‐IL binary mixtures by combining the group contribution (GC) method with three machine learning algorithms: artificial neural network, XGBoost, and LightGBM. A large number of experimental data from reliable open sources is exhaustively collected to train, validate, and test the proposed ML‐based GC models. Furthermore, the Shapley Additive Explanations technique is employed to quantify the influential factors behind all the studied properties. Finally, these ML‐based GC models are sequentially integrated into computer‐aided mixed solvent design, process design, and optimization through an industrial case study of recovering hydrogen from raw coke oven gas. Optimization results demonstrate their high computational efficiency and integrability in solvent and process design, while also highlighting the significant potential of IL‐IL binary mixtures in practical applications.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aic.18392</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7128-1511</orcidid><orcidid>https://orcid.org/0000-0002-2007-546X</orcidid><orcidid>https://orcid.org/0000-0001-9828-8660</orcidid><orcidid>https://orcid.org/0000-0002-1975-3569</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2024-05, Vol.70 (5), p.n/a |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_3038639525 |
source | Wiley Journals |
subjects | Algorithms Artificial neural networks Binary mixtures Coke oven gas Coke ovens Design Design optimization H2 recovery ionic liquid mixtures Ionic liquids Learning algorithms Machine learning Modelling Neural networks property modeling solvent tailoring Solvents Surface tension |
title | Ionic liquid binary mixtures: Machine learning‐assisted modeling, solvent tailoring, process design, and optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic%20liquid%20binary%20mixtures:%20Machine%20learning%E2%80%90assisted%20modeling,%20solvent%20tailoring,%20process%20design,%20and%20optimization&rft.jtitle=AIChE%20journal&rft.au=Chen,%20Yuqiu&rft.date=2024-05&rft.volume=70&rft.issue=5&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18392&rft_dat=%3Cproquest_cross%3E3038639525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038639525&rft_id=info:pmid/&rfr_iscdi=true |