Ionic liquid binary mixtures: Machine learning‐assisted modeling, solvent tailoring, process design, and optimization

This work conducts a comprehensive modeling study on the viscosity, density, heat capacity, and surface tension of ionic liquid (IL)‐IL binary mixtures by combining the group contribution (GC) method with three machine learning algorithms: artificial neural network, XGBoost, and LightGBM. A large nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2024-05, Vol.70 (5), p.n/a
Hauptverfasser: Chen, Yuqiu, Ma, Sulei, Lei, Yang, Liang, Xiaodong, Liu, Xinyan, Kontogeorgis, Georgios M., Gani, Rafiqul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title AIChE journal
container_volume 70
creator Chen, Yuqiu
Ma, Sulei
Lei, Yang
Liang, Xiaodong
Liu, Xinyan
Kontogeorgis, Georgios M.
Gani, Rafiqul
description This work conducts a comprehensive modeling study on the viscosity, density, heat capacity, and surface tension of ionic liquid (IL)‐IL binary mixtures by combining the group contribution (GC) method with three machine learning algorithms: artificial neural network, XGBoost, and LightGBM. A large number of experimental data from reliable open sources is exhaustively collected to train, validate, and test the proposed ML‐based GC models. Furthermore, the Shapley Additive Explanations technique is employed to quantify the influential factors behind all the studied properties. Finally, these ML‐based GC models are sequentially integrated into computer‐aided mixed solvent design, process design, and optimization through an industrial case study of recovering hydrogen from raw coke oven gas. Optimization results demonstrate their high computational efficiency and integrability in solvent and process design, while also highlighting the significant potential of IL‐IL binary mixtures in practical applications.
doi_str_mv 10.1002/aic.18392
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3038639525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3038639525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-9ef0b4272a912e5b4078ab259a49e38e4af2400e9fa81e10d78211bf492120433</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqWw4AaWWCGR1nYSErOrKn4qFbGBteUkkzJVYrd2QikrjsAZOQmmZcvKmk9vxjOPkHPORpwxMdZYjngeS3FABjxNsiiVLD0kA8YYj0LAj8mJ98tQiSwXA7KZWYMlbXDdY0ULNNptaYvvXe_A39BHXb6iAdqAdgbN4vvzS3uPvoOKtraCJmRX1NvmDUxHO42Ndbto5WwJ3tMKPC7MFdWmonbVYYsfukNrTslRrRsPZ3_vkLzc3T5PH6L50_1sOplHpZCZiCTUrEhEJrTkAtIiYVmuC5FKnUiIc0h0LRLGQNY658BZFY7ivKgTKbhgSRwPycV-blho3YPv1NL2zoQvVczi_DqWqUgDdbmnSme9d1CrlcM2qFCcqV-vKnhVO6-BHe_ZDTaw_R9Uk9l03_EDVW97cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038639525</pqid></control><display><type>article</type><title>Ionic liquid binary mixtures: Machine learning‐assisted modeling, solvent tailoring, process design, and optimization</title><source>Wiley Journals</source><creator>Chen, Yuqiu ; Ma, Sulei ; Lei, Yang ; Liang, Xiaodong ; Liu, Xinyan ; Kontogeorgis, Georgios M. ; Gani, Rafiqul</creator><creatorcontrib>Chen, Yuqiu ; Ma, Sulei ; Lei, Yang ; Liang, Xiaodong ; Liu, Xinyan ; Kontogeorgis, Georgios M. ; Gani, Rafiqul</creatorcontrib><description>This work conducts a comprehensive modeling study on the viscosity, density, heat capacity, and surface tension of ionic liquid (IL)‐IL binary mixtures by combining the group contribution (GC) method with three machine learning algorithms: artificial neural network, XGBoost, and LightGBM. A large number of experimental data from reliable open sources is exhaustively collected to train, validate, and test the proposed ML‐based GC models. Furthermore, the Shapley Additive Explanations technique is employed to quantify the influential factors behind all the studied properties. Finally, these ML‐based GC models are sequentially integrated into computer‐aided mixed solvent design, process design, and optimization through an industrial case study of recovering hydrogen from raw coke oven gas. Optimization results demonstrate their high computational efficiency and integrability in solvent and process design, while also highlighting the significant potential of IL‐IL binary mixtures in practical applications.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18392</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Artificial neural networks ; Binary mixtures ; Coke oven gas ; Coke ovens ; Design ; Design optimization ; H2 recovery ; ionic liquid mixtures ; Ionic liquids ; Learning algorithms ; Machine learning ; Modelling ; Neural networks ; property modeling ; solvent tailoring ; Solvents ; Surface tension</subject><ispartof>AIChE journal, 2024-05, Vol.70 (5), p.n/a</ispartof><rights>2024 American Institute of Chemical Engineers.</rights><rights>2024 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-9ef0b4272a912e5b4078ab259a49e38e4af2400e9fa81e10d78211bf492120433</citedby><cites>FETCH-LOGICAL-c2972-9ef0b4272a912e5b4078ab259a49e38e4af2400e9fa81e10d78211bf492120433</cites><orcidid>0000-0002-7128-1511 ; 0000-0002-2007-546X ; 0000-0001-9828-8660 ; 0000-0002-1975-3569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.18392$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.18392$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Chen, Yuqiu</creatorcontrib><creatorcontrib>Ma, Sulei</creatorcontrib><creatorcontrib>Lei, Yang</creatorcontrib><creatorcontrib>Liang, Xiaodong</creatorcontrib><creatorcontrib>Liu, Xinyan</creatorcontrib><creatorcontrib>Kontogeorgis, Georgios M.</creatorcontrib><creatorcontrib>Gani, Rafiqul</creatorcontrib><title>Ionic liquid binary mixtures: Machine learning‐assisted modeling, solvent tailoring, process design, and optimization</title><title>AIChE journal</title><description>This work conducts a comprehensive modeling study on the viscosity, density, heat capacity, and surface tension of ionic liquid (IL)‐IL binary mixtures by combining the group contribution (GC) method with three machine learning algorithms: artificial neural network, XGBoost, and LightGBM. A large number of experimental data from reliable open sources is exhaustively collected to train, validate, and test the proposed ML‐based GC models. Furthermore, the Shapley Additive Explanations technique is employed to quantify the influential factors behind all the studied properties. Finally, these ML‐based GC models are sequentially integrated into computer‐aided mixed solvent design, process design, and optimization through an industrial case study of recovering hydrogen from raw coke oven gas. Optimization results demonstrate their high computational efficiency and integrability in solvent and process design, while also highlighting the significant potential of IL‐IL binary mixtures in practical applications.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Binary mixtures</subject><subject>Coke oven gas</subject><subject>Coke ovens</subject><subject>Design</subject><subject>Design optimization</subject><subject>H2 recovery</subject><subject>ionic liquid mixtures</subject><subject>Ionic liquids</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>property modeling</subject><subject>solvent tailoring</subject><subject>Solvents</subject><subject>Surface tension</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqWw4AaWWCGR1nYSErOrKn4qFbGBteUkkzJVYrd2QikrjsAZOQmmZcvKmk9vxjOPkHPORpwxMdZYjngeS3FABjxNsiiVLD0kA8YYj0LAj8mJ98tQiSwXA7KZWYMlbXDdY0ULNNptaYvvXe_A39BHXb6iAdqAdgbN4vvzS3uPvoOKtraCJmRX1NvmDUxHO42Ndbto5WwJ3tMKPC7MFdWmonbVYYsfukNrTslRrRsPZ3_vkLzc3T5PH6L50_1sOplHpZCZiCTUrEhEJrTkAtIiYVmuC5FKnUiIc0h0LRLGQNY658BZFY7ivKgTKbhgSRwPycV-blho3YPv1NL2zoQvVczi_DqWqUgDdbmnSme9d1CrlcM2qFCcqV-vKnhVO6-BHe_ZDTaw_R9Uk9l03_EDVW97cg</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Chen, Yuqiu</creator><creator>Ma, Sulei</creator><creator>Lei, Yang</creator><creator>Liang, Xiaodong</creator><creator>Liu, Xinyan</creator><creator>Kontogeorgis, Georgios M.</creator><creator>Gani, Rafiqul</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7128-1511</orcidid><orcidid>https://orcid.org/0000-0002-2007-546X</orcidid><orcidid>https://orcid.org/0000-0001-9828-8660</orcidid><orcidid>https://orcid.org/0000-0002-1975-3569</orcidid></search><sort><creationdate>202405</creationdate><title>Ionic liquid binary mixtures: Machine learning‐assisted modeling, solvent tailoring, process design, and optimization</title><author>Chen, Yuqiu ; Ma, Sulei ; Lei, Yang ; Liang, Xiaodong ; Liu, Xinyan ; Kontogeorgis, Georgios M. ; Gani, Rafiqul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-9ef0b4272a912e5b4078ab259a49e38e4af2400e9fa81e10d78211bf492120433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Binary mixtures</topic><topic>Coke oven gas</topic><topic>Coke ovens</topic><topic>Design</topic><topic>Design optimization</topic><topic>H2 recovery</topic><topic>ionic liquid mixtures</topic><topic>Ionic liquids</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>property modeling</topic><topic>solvent tailoring</topic><topic>Solvents</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuqiu</creatorcontrib><creatorcontrib>Ma, Sulei</creatorcontrib><creatorcontrib>Lei, Yang</creatorcontrib><creatorcontrib>Liang, Xiaodong</creatorcontrib><creatorcontrib>Liu, Xinyan</creatorcontrib><creatorcontrib>Kontogeorgis, Georgios M.</creatorcontrib><creatorcontrib>Gani, Rafiqul</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yuqiu</au><au>Ma, Sulei</au><au>Lei, Yang</au><au>Liang, Xiaodong</au><au>Liu, Xinyan</au><au>Kontogeorgis, Georgios M.</au><au>Gani, Rafiqul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic liquid binary mixtures: Machine learning‐assisted modeling, solvent tailoring, process design, and optimization</atitle><jtitle>AIChE journal</jtitle><date>2024-05</date><risdate>2024</risdate><volume>70</volume><issue>5</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>This work conducts a comprehensive modeling study on the viscosity, density, heat capacity, and surface tension of ionic liquid (IL)‐IL binary mixtures by combining the group contribution (GC) method with three machine learning algorithms: artificial neural network, XGBoost, and LightGBM. A large number of experimental data from reliable open sources is exhaustively collected to train, validate, and test the proposed ML‐based GC models. Furthermore, the Shapley Additive Explanations technique is employed to quantify the influential factors behind all the studied properties. Finally, these ML‐based GC models are sequentially integrated into computer‐aided mixed solvent design, process design, and optimization through an industrial case study of recovering hydrogen from raw coke oven gas. Optimization results demonstrate their high computational efficiency and integrability in solvent and process design, while also highlighting the significant potential of IL‐IL binary mixtures in practical applications.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.18392</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7128-1511</orcidid><orcidid>https://orcid.org/0000-0002-2007-546X</orcidid><orcidid>https://orcid.org/0000-0001-9828-8660</orcidid><orcidid>https://orcid.org/0000-0002-1975-3569</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2024-05, Vol.70 (5), p.n/a
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_3038639525
source Wiley Journals
subjects Algorithms
Artificial neural networks
Binary mixtures
Coke oven gas
Coke ovens
Design
Design optimization
H2 recovery
ionic liquid mixtures
Ionic liquids
Learning algorithms
Machine learning
Modelling
Neural networks
property modeling
solvent tailoring
Solvents
Surface tension
title Ionic liquid binary mixtures: Machine learning‐assisted modeling, solvent tailoring, process design, and optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic%20liquid%20binary%20mixtures:%20Machine%20learning%E2%80%90assisted%20modeling,%20solvent%20tailoring,%20process%20design,%20and%20optimization&rft.jtitle=AIChE%20journal&rft.au=Chen,%20Yuqiu&rft.date=2024-05&rft.volume=70&rft.issue=5&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18392&rft_dat=%3Cproquest_cross%3E3038639525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038639525&rft_id=info:pmid/&rfr_iscdi=true