Telematics combined actuarial neural networks for cross-sectional and longitudinal claim count data

We present novel cross-sectional and longitudinal claim count models for vehicle insurance built upon the combinedd actuarial neural network (CANN) framework proposed by Wüthrich and Merz. The CANN approach combines a classical actuarial model, such as a generalized linear model, with a neural netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASTIN Bulletin : The Journal of the IAA 2024-05, Vol.54 (2), p.239-262
Hauptverfasser: Duval, Francis, Boucher, Jean-Philippe, Pigeon, Mathieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue 2
container_start_page 239
container_title ASTIN Bulletin : The Journal of the IAA
container_volume 54
creator Duval, Francis
Boucher, Jean-Philippe
Pigeon, Mathieu
description We present novel cross-sectional and longitudinal claim count models for vehicle insurance built upon the combinedd actuarial neural network (CANN) framework proposed by Wüthrich and Merz. The CANN approach combines a classical actuarial model, such as a generalized linear model, with a neural network. This blending of models results in a two-component model comprising a classical regression model and a neural network part. The CANN model leverages the strengths of both components, providing a solid foundation and interpretability from the classical model while harnessing the flexibility and capacity to capture intricate relationships and interactions offered by the neural network. In our proposed models, we use well-known log-linear claim count regression models for the classical regression part and a multilayer perceptron (MLP) for the neural network part. The MLP part is used to process telematics car driving data given as a vector characterizing the driving behavior of each insured driver. In addition to the Poisson and negative binomial distributions for cross-sectional data, we propose a procedure for training our CANN model with a multivariate negative binomial specification. By doing so, we introduce a longitudinal model that accounts for the dependence between contracts from the same insured. Our results reveal that the CANN models exhibit superior performance compared to log-linear models that rely on manually engineered telematics features.
doi_str_mv 10.1017/asb.2024.4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3038344948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_asb_2024_4</cupid><sourcerecordid>3038344948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-86837de785ed5a7e49a5a56ca77fa2320d1a0284eeae1dbae95f8be668cd73c53</originalsourceid><addsrcrecordid>eNptkEtLxDAUhYMoOD42_oKCO7Fjnk26FPEFA27GdblNboeMbaNJivjv7TiCG1cH7v04595DyAWjS0aZvoHULjnlcikPyIJpI0omFD0kC6qYKqmo2DE5SWlLqWCG8wWxa-xxgOxtKmwYWj-iK8DmCaKHvhhxij-SP0N8S0UXYmFjSKlMaLMP47yE0RV9GDc-T87vBrYHP8xu05gLBxnOyFEHfcLzXz0lrw_367uncvXy-Hx3uyqtkCaXpjJCO9RGoVOgUdagQFUWtO6AC04dA8qNRARkrgWsVWdarCpjnRZWiVNyufd9j-FjwpSbbZjifFFqBBVGSFlLM1NXe-rnj4hd8x79APGrYbTZldjMJTa7Ehs5w8UeRhtGn_7QmnKmZK13qde_fjC00bsN_sX-4_gNrYh_5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038344948</pqid></control><display><type>article</type><title>Telematics combined actuarial neural networks for cross-sectional and longitudinal claim count data</title><source>Cambridge University Press Journals Complete</source><creator>Duval, Francis ; Boucher, Jean-Philippe ; Pigeon, Mathieu</creator><creatorcontrib>Duval, Francis ; Boucher, Jean-Philippe ; Pigeon, Mathieu</creatorcontrib><description>We present novel cross-sectional and longitudinal claim count models for vehicle insurance built upon the combinedd actuarial neural network (CANN) framework proposed by Wüthrich and Merz. The CANN approach combines a classical actuarial model, such as a generalized linear model, with a neural network. This blending of models results in a two-component model comprising a classical regression model and a neural network part. The CANN model leverages the strengths of both components, providing a solid foundation and interpretability from the classical model while harnessing the flexibility and capacity to capture intricate relationships and interactions offered by the neural network. In our proposed models, we use well-known log-linear claim count regression models for the classical regression part and a multilayer perceptron (MLP) for the neural network part. The MLP part is used to process telematics car driving data given as a vector characterizing the driving behavior of each insured driver. In addition to the Poisson and negative binomial distributions for cross-sectional data, we propose a procedure for training our CANN model with a multivariate negative binomial specification. By doing so, we introduce a longitudinal model that accounts for the dependence between contracts from the same insured. Our results reveal that the CANN models exhibit superior performance compared to log-linear models that rely on manually engineered telematics features.</description><identifier>ISSN: 0515-0361</identifier><identifier>EISSN: 1783-1350</identifier><identifier>DOI: 10.1017/asb.2024.4</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Algorithms ; Automobile driving ; Deep learning ; Generalized linear models ; Neural networks ; Risk factors ; Roads &amp; highways ; Telematics</subject><ispartof>ASTIN Bulletin : The Journal of the IAA, 2024-05, Vol.54 (2), p.239-262</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press on behalf of The International Actuarial Association</rights><rights>The Author(s), 2024. Published by Cambridge University Press on behalf of The International Actuarial Association. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-86837de785ed5a7e49a5a56ca77fa2320d1a0284eeae1dbae95f8be668cd73c53</cites><orcidid>0009-0000-1378-0710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0515036124000047/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>Duval, Francis</creatorcontrib><creatorcontrib>Boucher, Jean-Philippe</creatorcontrib><creatorcontrib>Pigeon, Mathieu</creatorcontrib><title>Telematics combined actuarial neural networks for cross-sectional and longitudinal claim count data</title><title>ASTIN Bulletin : The Journal of the IAA</title><addtitle>ASTIN Bull</addtitle><description>We present novel cross-sectional and longitudinal claim count models for vehicle insurance built upon the combinedd actuarial neural network (CANN) framework proposed by Wüthrich and Merz. The CANN approach combines a classical actuarial model, such as a generalized linear model, with a neural network. This blending of models results in a two-component model comprising a classical regression model and a neural network part. The CANN model leverages the strengths of both components, providing a solid foundation and interpretability from the classical model while harnessing the flexibility and capacity to capture intricate relationships and interactions offered by the neural network. In our proposed models, we use well-known log-linear claim count regression models for the classical regression part and a multilayer perceptron (MLP) for the neural network part. The MLP part is used to process telematics car driving data given as a vector characterizing the driving behavior of each insured driver. In addition to the Poisson and negative binomial distributions for cross-sectional data, we propose a procedure for training our CANN model with a multivariate negative binomial specification. By doing so, we introduce a longitudinal model that accounts for the dependence between contracts from the same insured. Our results reveal that the CANN models exhibit superior performance compared to log-linear models that rely on manually engineered telematics features.</description><subject>Algorithms</subject><subject>Automobile driving</subject><subject>Deep learning</subject><subject>Generalized linear models</subject><subject>Neural networks</subject><subject>Risk factors</subject><subject>Roads &amp; highways</subject><subject>Telematics</subject><issn>0515-0361</issn><issn>1783-1350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><recordid>eNptkEtLxDAUhYMoOD42_oKCO7Fjnk26FPEFA27GdblNboeMbaNJivjv7TiCG1cH7v04595DyAWjS0aZvoHULjnlcikPyIJpI0omFD0kC6qYKqmo2DE5SWlLqWCG8wWxa-xxgOxtKmwYWj-iK8DmCaKHvhhxij-SP0N8S0UXYmFjSKlMaLMP47yE0RV9GDc-T87vBrYHP8xu05gLBxnOyFEHfcLzXz0lrw_367uncvXy-Hx3uyqtkCaXpjJCO9RGoVOgUdagQFUWtO6AC04dA8qNRARkrgWsVWdarCpjnRZWiVNyufd9j-FjwpSbbZjifFFqBBVGSFlLM1NXe-rnj4hd8x79APGrYbTZldjMJTa7Ehs5w8UeRhtGn_7QmnKmZK13qde_fjC00bsN_sX-4_gNrYh_5g</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Duval, Francis</creator><creator>Boucher, Jean-Philippe</creator><creator>Pigeon, Mathieu</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0000-1378-0710</orcidid></search><sort><creationdate>20240501</creationdate><title>Telematics combined actuarial neural networks for cross-sectional and longitudinal claim count data</title><author>Duval, Francis ; Boucher, Jean-Philippe ; Pigeon, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-86837de785ed5a7e49a5a56ca77fa2320d1a0284eeae1dbae95f8be668cd73c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Automobile driving</topic><topic>Deep learning</topic><topic>Generalized linear models</topic><topic>Neural networks</topic><topic>Risk factors</topic><topic>Roads &amp; highways</topic><topic>Telematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duval, Francis</creatorcontrib><creatorcontrib>Boucher, Jean-Philippe</creatorcontrib><creatorcontrib>Pigeon, Mathieu</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>ASTIN Bulletin : The Journal of the IAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duval, Francis</au><au>Boucher, Jean-Philippe</au><au>Pigeon, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Telematics combined actuarial neural networks for cross-sectional and longitudinal claim count data</atitle><jtitle>ASTIN Bulletin : The Journal of the IAA</jtitle><addtitle>ASTIN Bull</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>54</volume><issue>2</issue><spage>239</spage><epage>262</epage><pages>239-262</pages><issn>0515-0361</issn><eissn>1783-1350</eissn><abstract>We present novel cross-sectional and longitudinal claim count models for vehicle insurance built upon the combinedd actuarial neural network (CANN) framework proposed by Wüthrich and Merz. The CANN approach combines a classical actuarial model, such as a generalized linear model, with a neural network. This blending of models results in a two-component model comprising a classical regression model and a neural network part. The CANN model leverages the strengths of both components, providing a solid foundation and interpretability from the classical model while harnessing the flexibility and capacity to capture intricate relationships and interactions offered by the neural network. In our proposed models, we use well-known log-linear claim count regression models for the classical regression part and a multilayer perceptron (MLP) for the neural network part. The MLP part is used to process telematics car driving data given as a vector characterizing the driving behavior of each insured driver. In addition to the Poisson and negative binomial distributions for cross-sectional data, we propose a procedure for training our CANN model with a multivariate negative binomial specification. By doing so, we introduce a longitudinal model that accounts for the dependence between contracts from the same insured. Our results reveal that the CANN models exhibit superior performance compared to log-linear models that rely on manually engineered telematics features.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/asb.2024.4</doi><tpages>24</tpages><orcidid>https://orcid.org/0009-0000-1378-0710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0515-0361
ispartof ASTIN Bulletin : The Journal of the IAA, 2024-05, Vol.54 (2), p.239-262
issn 0515-0361
1783-1350
language eng
recordid cdi_proquest_journals_3038344948
source Cambridge University Press Journals Complete
subjects Algorithms
Automobile driving
Deep learning
Generalized linear models
Neural networks
Risk factors
Roads & highways
Telematics
title Telematics combined actuarial neural networks for cross-sectional and longitudinal claim count data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Telematics%20combined%20actuarial%20neural%20networks%20for%20cross-sectional%20and%20longitudinal%20claim%20count%20data&rft.jtitle=ASTIN%20Bulletin%20:%20The%20Journal%20of%20the%20IAA&rft.au=Duval,%20Francis&rft.date=2024-05-01&rft.volume=54&rft.issue=2&rft.spage=239&rft.epage=262&rft.pages=239-262&rft.issn=0515-0361&rft.eissn=1783-1350&rft_id=info:doi/10.1017/asb.2024.4&rft_dat=%3Cproquest_cross%3E3038344948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038344948&rft_id=info:pmid/&rft_cupid=10_1017_asb_2024_4&rfr_iscdi=true