Alternating parity weak sequencing

A subset S $S$ of a group (G , + ) $(G,+)$ is t $t$‐weakly sequenceable if there is an ordering (y 1 , … , y k ) $({y}_{1},{\rm{\ldots }},{y}_{k})$ of its elements such that the partial sums s 0 , s 1 , … , s k ${s}_{0},{s}_{1},{\rm{\ldots }},{s}_{k}$, given by s 0 = 0 ${s}_{0}=0$ and s i = ∑j = 1 i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial designs 2024-06, Vol.32 (6), p.308-327
Hauptverfasser: Costa, Simone, Della Fiore, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 327
container_issue 6
container_start_page 308
container_title Journal of combinatorial designs
container_volume 32
creator Costa, Simone
Della Fiore, Stefano
description A subset S $S$ of a group (G , + ) $(G,+)$ is t $t$‐weakly sequenceable if there is an ordering (y 1 , … , y k ) $({y}_{1},{\rm{\ldots }},{y}_{k})$ of its elements such that the partial sums s 0 , s 1 , … , s k ${s}_{0},{s}_{1},{\rm{\ldots }},{s}_{k}$, given by s 0 = 0 ${s}_{0}=0$ and s i = ∑j = 1 i y j ${s}_{i}={\sum }_{j=1}^{i}{y}_{j}$ for 1 ≤ i ≤ k $1\le i\le k$, satisfy s i ≠ s j ${s}_{i}\ne {s}_{j}$ whenever and 1 ≤ ∣ i − j ∣ ≤ t $1\le | i-j| \le t$. By Costa et al., it was proved that if the order of a group is p e $pe$ then all sufficiently large subsets of the nonidentity elements are t $t$‐weakly sequenceable when p > 3 $p\gt 3$ is prime, e ≤ 3 $e\le 3$ and t ≤ 6 $t\le 6$. Inspired by this result, we show that, if G $G$ is the semidirect product of Z p ${{\mathbb{Z}}}_{p}$ and Z 2 ${{\mathbb{Z}}}_{2}$ and the subset S $S$ is balanced, then S $S$ admits, regardless of its size, an alternating parity t $t$‐weak sequencing whenever p > 3 $p\gt 3$ is prime and t ≤ 8 $t\le 8$. A subset of G $G$ is balanced if it contains the same number of even elements and odd elements and an alternating parity ordering alternates even and odd elements. Then using a hybrid approach that combines both Ramsey theory and the probabilistic method we also prove, for groups G $G$ that are semidirect products of a generic (nonnecessarily abelian) group N $N$ and Z 2 ${{\mathbb{Z}}}_{2}$, that all sufficiently large balanced subsets of the nonidentity elements admit an alternating parity t $t$‐weak sequencing. The same procedure works also for studying the weak sequenceability for generic sufficiently large (not necessarily balanced) sets. Here we have been able to prove that, if the size of a subset S $S$ of a group G $G$ is large enough and if S $S$ does not contain 0, then S $S$ is t $t$‐weakly sequenceable.
doi_str_mv 10.1002/jcd.21936
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3038323780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3038323780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2926-f01799c3321fa30867a00438095122cb12245e93cd71eab9a7208e69f1df72453</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmNw4B9UcOLQzYnXfByn8a1JXOAcZWmCWkpbkk5T_z2BcuViW_bj19ZLyCWFBQVgy9qWC0YV8iMyowWDnHMKx6kGjrksUJ2SsxhrAFAJmpGrdTO40Jqhat-z3oRqGLODMx9ZdF9719rUPicn3jTRXfzlOXm7v3vdPObbl4enzXqbW6YYzz1QoZRFZNQbBMmFAVihBFVQxuwuhVXhFNpSUGd2yggG0nHlaelFGuGcXE-6fejS7Tjoutun15qoEVAiQyEhUTcTZUMXY3Be96H6NGHUFPSPBTpZoH8tSOxyYg9V48b_Qf28uZ02vgEDeVoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038323780</pqid></control><display><type>article</type><title>Alternating parity weak sequencing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Costa, Simone ; Della Fiore, Stefano</creator><creatorcontrib>Costa, Simone ; Della Fiore, Stefano</creatorcontrib><description>A subset S $S$ of a group (G , + ) $(G,+)$ is t $t$‐weakly sequenceable if there is an ordering (y 1 , … , y k ) $({y}_{1},{\rm{\ldots }},{y}_{k})$ of its elements such that the partial sums s 0 , s 1 , … , s k ${s}_{0},{s}_{1},{\rm{\ldots }},{s}_{k}$, given by s 0 = 0 ${s}_{0}=0$ and s i = ∑j = 1 i y j ${s}_{i}={\sum }_{j=1}^{i}{y}_{j}$ for 1 ≤ i ≤ k $1\le i\le k$, satisfy s i ≠ s j ${s}_{i}\ne {s}_{j}$ whenever and 1 ≤ ∣ i − j ∣ ≤ t $1\le | i-j| \le t$. By Costa et al., it was proved that if the order of a group is p e $pe$ then all sufficiently large subsets of the nonidentity elements are t $t$‐weakly sequenceable when p &gt; 3 $p\gt 3$ is prime, e ≤ 3 $e\le 3$ and t ≤ 6 $t\le 6$. Inspired by this result, we show that, if G $G$ is the semidirect product of Z p ${{\mathbb{Z}}}_{p}$ and Z 2 ${{\mathbb{Z}}}_{2}$ and the subset S $S$ is balanced, then S $S$ admits, regardless of its size, an alternating parity t $t$‐weak sequencing whenever p &gt; 3 $p\gt 3$ is prime and t ≤ 8 $t\le 8$. A subset of G $G$ is balanced if it contains the same number of even elements and odd elements and an alternating parity ordering alternates even and odd elements. Then using a hybrid approach that combines both Ramsey theory and the probabilistic method we also prove, for groups G $G$ that are semidirect products of a generic (nonnecessarily abelian) group N $N$ and Z 2 ${{\mathbb{Z}}}_{2}$, that all sufficiently large balanced subsets of the nonidentity elements admit an alternating parity t $t$‐weak sequencing. The same procedure works also for studying the weak sequenceability for generic sufficiently large (not necessarily balanced) sets. Here we have been able to prove that, if the size of a subset S $S$ of a group G $G$ is large enough and if S $S$ does not contain 0, then S $S$ is t $t$‐weakly sequenceable.</description><identifier>ISSN: 1063-8539</identifier><identifier>EISSN: 1520-6610</identifier><identifier>DOI: 10.1002/jcd.21936</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>combinatorial Nullstellensatz ; Parity ; Probabilistic methods ; Ramsey theory ; sequenceability</subject><ispartof>Journal of combinatorial designs, 2024-06, Vol.32 (6), p.308-327</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2926-f01799c3321fa30867a00438095122cb12245e93cd71eab9a7208e69f1df72453</cites><orcidid>0000-0002-7034-084X ; 0000-0003-3880-6299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcd.21936$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcd.21936$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Costa, Simone</creatorcontrib><creatorcontrib>Della Fiore, Stefano</creatorcontrib><title>Alternating parity weak sequencing</title><title>Journal of combinatorial designs</title><description>A subset S $S$ of a group (G , + ) $(G,+)$ is t $t$‐weakly sequenceable if there is an ordering (y 1 , … , y k ) $({y}_{1},{\rm{\ldots }},{y}_{k})$ of its elements such that the partial sums s 0 , s 1 , … , s k ${s}_{0},{s}_{1},{\rm{\ldots }},{s}_{k}$, given by s 0 = 0 ${s}_{0}=0$ and s i = ∑j = 1 i y j ${s}_{i}={\sum }_{j=1}^{i}{y}_{j}$ for 1 ≤ i ≤ k $1\le i\le k$, satisfy s i ≠ s j ${s}_{i}\ne {s}_{j}$ whenever and 1 ≤ ∣ i − j ∣ ≤ t $1\le | i-j| \le t$. By Costa et al., it was proved that if the order of a group is p e $pe$ then all sufficiently large subsets of the nonidentity elements are t $t$‐weakly sequenceable when p &gt; 3 $p\gt 3$ is prime, e ≤ 3 $e\le 3$ and t ≤ 6 $t\le 6$. Inspired by this result, we show that, if G $G$ is the semidirect product of Z p ${{\mathbb{Z}}}_{p}$ and Z 2 ${{\mathbb{Z}}}_{2}$ and the subset S $S$ is balanced, then S $S$ admits, regardless of its size, an alternating parity t $t$‐weak sequencing whenever p &gt; 3 $p\gt 3$ is prime and t ≤ 8 $t\le 8$. A subset of G $G$ is balanced if it contains the same number of even elements and odd elements and an alternating parity ordering alternates even and odd elements. Then using a hybrid approach that combines both Ramsey theory and the probabilistic method we also prove, for groups G $G$ that are semidirect products of a generic (nonnecessarily abelian) group N $N$ and Z 2 ${{\mathbb{Z}}}_{2}$, that all sufficiently large balanced subsets of the nonidentity elements admit an alternating parity t $t$‐weak sequencing. The same procedure works also for studying the weak sequenceability for generic sufficiently large (not necessarily balanced) sets. Here we have been able to prove that, if the size of a subset S $S$ of a group G $G$ is large enough and if S $S$ does not contain 0, then S $S$ is t $t$‐weakly sequenceable.</description><subject>combinatorial Nullstellensatz</subject><subject>Parity</subject><subject>Probabilistic methods</subject><subject>Ramsey theory</subject><subject>sequenceability</subject><issn>1063-8539</issn><issn>1520-6610</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmNw4B9UcOLQzYnXfByn8a1JXOAcZWmCWkpbkk5T_z2BcuViW_bj19ZLyCWFBQVgy9qWC0YV8iMyowWDnHMKx6kGjrksUJ2SsxhrAFAJmpGrdTO40Jqhat-z3oRqGLODMx9ZdF9719rUPicn3jTRXfzlOXm7v3vdPObbl4enzXqbW6YYzz1QoZRFZNQbBMmFAVihBFVQxuwuhVXhFNpSUGd2yggG0nHlaelFGuGcXE-6fejS7Tjoutun15qoEVAiQyEhUTcTZUMXY3Be96H6NGHUFPSPBTpZoH8tSOxyYg9V48b_Qf28uZ02vgEDeVoU</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Costa, Simone</creator><creator>Della Fiore, Stefano</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7034-084X</orcidid><orcidid>https://orcid.org/0000-0003-3880-6299</orcidid></search><sort><creationdate>202406</creationdate><title>Alternating parity weak sequencing</title><author>Costa, Simone ; Della Fiore, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2926-f01799c3321fa30867a00438095122cb12245e93cd71eab9a7208e69f1df72453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>combinatorial Nullstellensatz</topic><topic>Parity</topic><topic>Probabilistic methods</topic><topic>Ramsey theory</topic><topic>sequenceability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa, Simone</creatorcontrib><creatorcontrib>Della Fiore, Stefano</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial designs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa, Simone</au><au>Della Fiore, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternating parity weak sequencing</atitle><jtitle>Journal of combinatorial designs</jtitle><date>2024-06</date><risdate>2024</risdate><volume>32</volume><issue>6</issue><spage>308</spage><epage>327</epage><pages>308-327</pages><issn>1063-8539</issn><eissn>1520-6610</eissn><abstract>A subset S $S$ of a group (G , + ) $(G,+)$ is t $t$‐weakly sequenceable if there is an ordering (y 1 , … , y k ) $({y}_{1},{\rm{\ldots }},{y}_{k})$ of its elements such that the partial sums s 0 , s 1 , … , s k ${s}_{0},{s}_{1},{\rm{\ldots }},{s}_{k}$, given by s 0 = 0 ${s}_{0}=0$ and s i = ∑j = 1 i y j ${s}_{i}={\sum }_{j=1}^{i}{y}_{j}$ for 1 ≤ i ≤ k $1\le i\le k$, satisfy s i ≠ s j ${s}_{i}\ne {s}_{j}$ whenever and 1 ≤ ∣ i − j ∣ ≤ t $1\le | i-j| \le t$. By Costa et al., it was proved that if the order of a group is p e $pe$ then all sufficiently large subsets of the nonidentity elements are t $t$‐weakly sequenceable when p &gt; 3 $p\gt 3$ is prime, e ≤ 3 $e\le 3$ and t ≤ 6 $t\le 6$. Inspired by this result, we show that, if G $G$ is the semidirect product of Z p ${{\mathbb{Z}}}_{p}$ and Z 2 ${{\mathbb{Z}}}_{2}$ and the subset S $S$ is balanced, then S $S$ admits, regardless of its size, an alternating parity t $t$‐weak sequencing whenever p &gt; 3 $p\gt 3$ is prime and t ≤ 8 $t\le 8$. A subset of G $G$ is balanced if it contains the same number of even elements and odd elements and an alternating parity ordering alternates even and odd elements. Then using a hybrid approach that combines both Ramsey theory and the probabilistic method we also prove, for groups G $G$ that are semidirect products of a generic (nonnecessarily abelian) group N $N$ and Z 2 ${{\mathbb{Z}}}_{2}$, that all sufficiently large balanced subsets of the nonidentity elements admit an alternating parity t $t$‐weak sequencing. The same procedure works also for studying the weak sequenceability for generic sufficiently large (not necessarily balanced) sets. Here we have been able to prove that, if the size of a subset S $S$ of a group G $G$ is large enough and if S $S$ does not contain 0, then S $S$ is t $t$‐weakly sequenceable.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jcd.21936</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7034-084X</orcidid><orcidid>https://orcid.org/0000-0003-3880-6299</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-8539
ispartof Journal of combinatorial designs, 2024-06, Vol.32 (6), p.308-327
issn 1063-8539
1520-6610
language eng
recordid cdi_proquest_journals_3038323780
source Wiley Online Library Journals Frontfile Complete
subjects combinatorial Nullstellensatz
Parity
Probabilistic methods
Ramsey theory
sequenceability
title Alternating parity weak sequencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternating%20parity%20weak%20sequencing&rft.jtitle=Journal%20of%20combinatorial%20designs&rft.au=Costa,%20Simone&rft.date=2024-06&rft.volume=32&rft.issue=6&rft.spage=308&rft.epage=327&rft.pages=308-327&rft.issn=1063-8539&rft.eissn=1520-6610&rft_id=info:doi/10.1002/jcd.21936&rft_dat=%3Cproquest_cross%3E3038323780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038323780&rft_id=info:pmid/&rfr_iscdi=true