Simples in a cotilting heart
Every cotilting module over a ring R induces a t-structure with a Grothendieck heart in the derived category D(Mod- R ). We determine the simple objects in this heart and their injective envelopes, combining torsion-theoretic aspects with methods from the model theory of modules and Auslander-Reiten...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2024-05, Vol.307 (1), Article 12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Mathematische Zeitschrift |
container_volume | 307 |
creator | Angeleri Hügel, Lidia Herzog, Ivo Laking, Rosanna |
description | Every cotilting module over a ring
R
induces a t-structure with a Grothendieck heart in the derived category D(Mod-
R
). We determine the simple objects in this heart and their injective envelopes, combining torsion-theoretic aspects with methods from the model theory of modules and Auslander-Reiten theory. |
doi_str_mv | 10.1007/s00209-024-03464-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3038111475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3038111475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-9b6e4bd8d2f51141e3f7c90ecbf99d9c9317978c6e5a04f736cd2a584ca16a873</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoWEd_QFwUXEffS9ImWcqgozDgQl2HNE3GDp12TDoL_95oBXeu3uLecx8cQi4RbhBA3iYABpoCExS4qAXFI1Kg4IyiYvyYFDmvaKWkOCVnKW0BcihFQa5eut2-96nshtKWbpy6fuqGTfnubZzOyUmwffIXv3dB3h7uX5ePdP28elreranjKCaqm9qLplUtCxWiQM-DdBq8a4LWrXaao9RSudpXFkSQvHYts5USzmJtleQLcj3v7uP4cfBpMtvxEIf80nDgCvOorHKLzS0Xx5SiD2Yfu52NnwbBfFswswWTLZgfCwYzxGco5fKw8fFv-h_qC1KTXUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038111475</pqid></control><display><type>article</type><title>Simples in a cotilting heart</title><source>Springer Nature - Complete Springer Journals</source><creator>Angeleri Hügel, Lidia ; Herzog, Ivo ; Laking, Rosanna</creator><creatorcontrib>Angeleri Hügel, Lidia ; Herzog, Ivo ; Laking, Rosanna</creatorcontrib><description>Every cotilting module over a ring
R
induces a t-structure with a Grothendieck heart in the derived category D(Mod-
R
). We determine the simple objects in this heart and their injective envelopes, combining torsion-theoretic aspects with methods from the model theory of modules and Auslander-Reiten theory.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-024-03464-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematics ; Mathematics and Statistics ; Modules</subject><ispartof>Mathematische Zeitschrift, 2024-05, Vol.307 (1), Article 12</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-9b6e4bd8d2f51141e3f7c90ecbf99d9c9317978c6e5a04f736cd2a584ca16a873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-024-03464-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-024-03464-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Angeleri Hügel, Lidia</creatorcontrib><creatorcontrib>Herzog, Ivo</creatorcontrib><creatorcontrib>Laking, Rosanna</creatorcontrib><title>Simples in a cotilting heart</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>Every cotilting module over a ring
R
induces a t-structure with a Grothendieck heart in the derived category D(Mod-
R
). We determine the simple objects in this heart and their injective envelopes, combining torsion-theoretic aspects with methods from the model theory of modules and Auslander-Reiten theory.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFKxDAURYMoWEd_QFwUXEffS9ImWcqgozDgQl2HNE3GDp12TDoL_95oBXeu3uLecx8cQi4RbhBA3iYABpoCExS4qAXFI1Kg4IyiYvyYFDmvaKWkOCVnKW0BcihFQa5eut2-96nshtKWbpy6fuqGTfnubZzOyUmwffIXv3dB3h7uX5ePdP28elreranjKCaqm9qLplUtCxWiQM-DdBq8a4LWrXaao9RSudpXFkSQvHYts5USzmJtleQLcj3v7uP4cfBpMtvxEIf80nDgCvOorHKLzS0Xx5SiD2Yfu52NnwbBfFswswWTLZgfCwYzxGco5fKw8fFv-h_qC1KTXUs</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Angeleri Hügel, Lidia</creator><creator>Herzog, Ivo</creator><creator>Laking, Rosanna</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240501</creationdate><title>Simples in a cotilting heart</title><author>Angeleri Hügel, Lidia ; Herzog, Ivo ; Laking, Rosanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-9b6e4bd8d2f51141e3f7c90ecbf99d9c9317978c6e5a04f736cd2a584ca16a873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angeleri Hügel, Lidia</creatorcontrib><creatorcontrib>Herzog, Ivo</creatorcontrib><creatorcontrib>Laking, Rosanna</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angeleri Hügel, Lidia</au><au>Herzog, Ivo</au><au>Laking, Rosanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simples in a cotilting heart</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>307</volume><issue>1</issue><artnum>12</artnum><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>Every cotilting module over a ring
R
induces a t-structure with a Grothendieck heart in the derived category D(Mod-
R
). We determine the simple objects in this heart and their injective envelopes, combining torsion-theoretic aspects with methods from the model theory of modules and Auslander-Reiten theory.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-024-03464-1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2024-05, Vol.307 (1), Article 12 |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_proquest_journals_3038111475 |
source | Springer Nature - Complete Springer Journals |
subjects | Mathematics Mathematics and Statistics Modules |
title | Simples in a cotilting heart |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simples%20in%20a%20cotilting%20heart&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Angeleri%20H%C3%BCgel,%20Lidia&rft.date=2024-05-01&rft.volume=307&rft.issue=1&rft.artnum=12&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-024-03464-1&rft_dat=%3Cproquest_cross%3E3038111475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038111475&rft_id=info:pmid/&rfr_iscdi=true |