The continuous stochastic gradient method: part II–application and numerics

In this contribution, we present a numerical analysis of the continuous stochastic gradient (CSG) method, including applications from topology optimization and convergence rates. In contrast to standard stochastic gradient optimization schemes, CSG does not discard old gradient samples from previous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2024-04, Vol.87 (3), p.977-1008
Hauptverfasser: Grieshammer, Max, Pflug, Lukas, Stingl, Michael, Uihlein, Andrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1008
container_issue 3
container_start_page 977
container_title Computational optimization and applications
container_volume 87
creator Grieshammer, Max
Pflug, Lukas
Stingl, Michael
Uihlein, Andrian
description In this contribution, we present a numerical analysis of the continuous stochastic gradient (CSG) method, including applications from topology optimization and convergence rates. In contrast to standard stochastic gradient optimization schemes, CSG does not discard old gradient samples from previous iterations. Instead, design dependent integration weights are calculated to form a convex combination as an approximation to the true gradient at the current design. As the approximation error vanishes in the course of the iterations, CSG represents a hybrid approach, starting off like a purely stochastic method and behaving like a full gradient scheme in the limit. In this work, the efficiency of CSG is demonstrated for practically relevant applications from topology optimization. These settings are characterized by both, a large number of optimization variables and an objective function, whose evaluation requires the numerical computation of multiple integrals concatenated in a nonlinear fashion. Such problems could not be solved by any existing optimization method before. Lastly, with regards to convergence rates, first estimates are provided and confirmed with the help of numerical experiments.
doi_str_mv 10.1007/s10589-023-00540-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3037949381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037949381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9cd772ef33584bea3d1f974ca6dc0ae96d14aed80e0dbd719e65647122dd0ef03</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyWmA3XdhLHbKjip1IRS5kt13baVK0dbEeIjXfgDXkSAkFiY7rLOd-VDkLnFC4pgLhKFMpaEmCcAJQFkNcDNKGl4ITVsjhEE5CsIhUAP0YnKW0BQArOJuhxuXHYBJ9b34c-4ZSD2eiUW4PXUdvW-Yz3Lm-CvcadjhnP55_vH7rrdq3RuQ0ea2-x7_cutiadoqNG75I7-71T9Hx3u5w9kMXT_Xx2syCGVzwTaawQzDWcl3Wxcppb2khRGF1ZA9rJytJCO1uDA7uygkpXlVUhKGPWgmuAT9HFuNvF8NK7lNU29NEPLxUHLmQheU0Hio2UiSGl6BrVxXav45uioL6zqTGbGrKpn2zqdZD4KKUB9msX_6b_sb4A2c9ykw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037949381</pqid></control><display><type>article</type><title>The continuous stochastic gradient method: part II–application and numerics</title><source>SpringerLink Journals</source><creator>Grieshammer, Max ; Pflug, Lukas ; Stingl, Michael ; Uihlein, Andrian</creator><creatorcontrib>Grieshammer, Max ; Pflug, Lukas ; Stingl, Michael ; Uihlein, Andrian</creatorcontrib><description>In this contribution, we present a numerical analysis of the continuous stochastic gradient (CSG) method, including applications from topology optimization and convergence rates. In contrast to standard stochastic gradient optimization schemes, CSG does not discard old gradient samples from previous iterations. Instead, design dependent integration weights are calculated to form a convex combination as an approximation to the true gradient at the current design. As the approximation error vanishes in the course of the iterations, CSG represents a hybrid approach, starting off like a purely stochastic method and behaving like a full gradient scheme in the limit. In this work, the efficiency of CSG is demonstrated for practically relevant applications from topology optimization. These settings are characterized by both, a large number of optimization variables and an objective function, whose evaluation requires the numerical computation of multiple integrals concatenated in a nonlinear fashion. Such problems could not be solved by any existing optimization method before. Lastly, with regards to convergence rates, first estimates are provided and confirmed with the help of numerical experiments.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-023-00540-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Convergence ; Convex and Discrete Geometry ; Management Science ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Statistics ; Topology optimization</subject><ispartof>Computational optimization and applications, 2024-04, Vol.87 (3), p.977-1008</ispartof><rights>The Author(s) 2023. corrected publication 2023</rights><rights>The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9cd772ef33584bea3d1f974ca6dc0ae96d14aed80e0dbd719e65647122dd0ef03</citedby><cites>FETCH-LOGICAL-c363t-9cd772ef33584bea3d1f974ca6dc0ae96d14aed80e0dbd719e65647122dd0ef03</cites><orcidid>0000-0002-0650-3747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-023-00540-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-023-00540-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Grieshammer, Max</creatorcontrib><creatorcontrib>Pflug, Lukas</creatorcontrib><creatorcontrib>Stingl, Michael</creatorcontrib><creatorcontrib>Uihlein, Andrian</creatorcontrib><title>The continuous stochastic gradient method: part II–application and numerics</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>In this contribution, we present a numerical analysis of the continuous stochastic gradient (CSG) method, including applications from topology optimization and convergence rates. In contrast to standard stochastic gradient optimization schemes, CSG does not discard old gradient samples from previous iterations. Instead, design dependent integration weights are calculated to form a convex combination as an approximation to the true gradient at the current design. As the approximation error vanishes in the course of the iterations, CSG represents a hybrid approach, starting off like a purely stochastic method and behaving like a full gradient scheme in the limit. In this work, the efficiency of CSG is demonstrated for practically relevant applications from topology optimization. These settings are characterized by both, a large number of optimization variables and an objective function, whose evaluation requires the numerical computation of multiple integrals concatenated in a nonlinear fashion. Such problems could not be solved by any existing optimization method before. Lastly, with regards to convergence rates, first estimates are provided and confirmed with the help of numerical experiments.</description><subject>Approximation</subject><subject>Convergence</subject><subject>Convex and Discrete Geometry</subject><subject>Management Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Statistics</subject><subject>Topology optimization</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kL1OwzAURi0EEqXwAkyWmA3XdhLHbKjip1IRS5kt13baVK0dbEeIjXfgDXkSAkFiY7rLOd-VDkLnFC4pgLhKFMpaEmCcAJQFkNcDNKGl4ITVsjhEE5CsIhUAP0YnKW0BQArOJuhxuXHYBJ9b34c-4ZSD2eiUW4PXUdvW-Yz3Lm-CvcadjhnP55_vH7rrdq3RuQ0ea2-x7_cutiadoqNG75I7-71T9Hx3u5w9kMXT_Xx2syCGVzwTaawQzDWcl3Wxcppb2khRGF1ZA9rJytJCO1uDA7uygkpXlVUhKGPWgmuAT9HFuNvF8NK7lNU29NEPLxUHLmQheU0Hio2UiSGl6BrVxXav45uioL6zqTGbGrKpn2zqdZD4KKUB9msX_6b_sb4A2c9ykw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Grieshammer, Max</creator><creator>Pflug, Lukas</creator><creator>Stingl, Michael</creator><creator>Uihlein, Andrian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0650-3747</orcidid></search><sort><creationdate>20240401</creationdate><title>The continuous stochastic gradient method: part II–application and numerics</title><author>Grieshammer, Max ; Pflug, Lukas ; Stingl, Michael ; Uihlein, Andrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9cd772ef33584bea3d1f974ca6dc0ae96d14aed80e0dbd719e65647122dd0ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Convergence</topic><topic>Convex and Discrete Geometry</topic><topic>Management Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Statistics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grieshammer, Max</creatorcontrib><creatorcontrib>Pflug, Lukas</creatorcontrib><creatorcontrib>Stingl, Michael</creatorcontrib><creatorcontrib>Uihlein, Andrian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grieshammer, Max</au><au>Pflug, Lukas</au><au>Stingl, Michael</au><au>Uihlein, Andrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The continuous stochastic gradient method: part II–application and numerics</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>87</volume><issue>3</issue><spage>977</spage><epage>1008</epage><pages>977-1008</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>In this contribution, we present a numerical analysis of the continuous stochastic gradient (CSG) method, including applications from topology optimization and convergence rates. In contrast to standard stochastic gradient optimization schemes, CSG does not discard old gradient samples from previous iterations. Instead, design dependent integration weights are calculated to form a convex combination as an approximation to the true gradient at the current design. As the approximation error vanishes in the course of the iterations, CSG represents a hybrid approach, starting off like a purely stochastic method and behaving like a full gradient scheme in the limit. In this work, the efficiency of CSG is demonstrated for practically relevant applications from topology optimization. These settings are characterized by both, a large number of optimization variables and an objective function, whose evaluation requires the numerical computation of multiple integrals concatenated in a nonlinear fashion. Such problems could not be solved by any existing optimization method before. Lastly, with regards to convergence rates, first estimates are provided and confirmed with the help of numerical experiments.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-023-00540-w</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-0650-3747</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-6003
ispartof Computational optimization and applications, 2024-04, Vol.87 (3), p.977-1008
issn 0926-6003
1573-2894
language eng
recordid cdi_proquest_journals_3037949381
source SpringerLink Journals
subjects Approximation
Convergence
Convex and Discrete Geometry
Management Science
Mathematics
Mathematics and Statistics
Numerical analysis
Operations Research
Operations Research/Decision Theory
Optimization
Statistics
Topology optimization
title The continuous stochastic gradient method: part II–application and numerics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20continuous%20stochastic%20gradient%20method:%20part%20II%E2%80%93application%20and%20numerics&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Grieshammer,%20Max&rft.date=2024-04-01&rft.volume=87&rft.issue=3&rft.spage=977&rft.epage=1008&rft.pages=977-1008&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-023-00540-w&rft_dat=%3Cproquest_cross%3E3037949381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037949381&rft_id=info:pmid/&rfr_iscdi=true