New optimized chaotic encryption with BCOVIDOA for efficient security of medical images in IoMT systems

The Internet of Medical Things systems involve medical data transmissions between patients, medical experts, and medical centers over public networks. The sensitivity of the medical images' contents and the personal information in the medical images required high levels of security. Chaotic map...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2024-05, Vol.36 (14), p.7705-7723
Hauptverfasser: Alsahafi, Yousef S., Khalid, Asmaa M., Hamza, Hanaa M., Hosny, Khalid M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7723
container_issue 14
container_start_page 7705
container_title Neural computing & applications
container_volume 36
creator Alsahafi, Yousef S.
Khalid, Asmaa M.
Hamza, Hanaa M.
Hosny, Khalid M.
description The Internet of Medical Things systems involve medical data transmissions between patients, medical experts, and medical centers over public networks. The sensitivity of the medical images' contents and the personal information in the medical images required high levels of security. Chaotic maps are successfully used in image encryption due to their high security and computational efficiency. Initial random sequences generate the keys for chaotic map confusion and diffusion processes. Selection of the initial parameters is the cornerstone of the success of chaotic maps in securing digital images. In this paper, the authors proposed utilizing the novel binary Coronavirus disease optimization algorithm to determine the optimal initial sequences for the chaotic maps that lead to the generation of the optimal secret keys. The proposed algorithm selects the optimal initial keys using a hybrid fitness function. The generated optimal secret keys are then used for medical image encryption/decryption. Several medical images from different modalities are utilized for testing, and the results are compared to the latest encryption techniques according to various criteria. The experimental results ensure the robustness of the proposed algorithm to various attacks and its superior performance to similar algorithms.
doi_str_mv 10.1007/s00521-024-09508-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3037916212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037916212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-21ec0ee98f388382080099141ff8eee53141e4127e5abd6b6be597d8d7e210283</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6M7TycZSmvSkA3ha2VOuPWVRMXO1UVvh5DkNixmtHMvXdGh5BLBtcMoLgJABlnCfA0gTIDmbAjMmKpEImATB6TEZRpXOepOCVnIWwAIM1lNiKrVzxQt-tsYz-xpnpduc5qiq32fZy6lh5st6a30_n77G4-ocZ5isZYbbHtaEC997brqTO0wdrqakttU60wUNvSmXtZ0NCHDptwTk5MtQ148VvH5O3hfjF9Sp7nj7Pp5DnRvIAu4Qw1IJbSCCmF5CABypKlzBiJiJmILaaMF5hVyzpf5kvMyqKWdYGcAZdiTK6G3J13H3sMndq4vW_jSSVAFCXLOeNRxQeV9i4Ej0btfPzb94qB-gaqBqAqAlU_QBWLJjGYQhS3K_R_0f-4vgBGLHgS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037916212</pqid></control><display><type>article</type><title>New optimized chaotic encryption with BCOVIDOA for efficient security of medical images in IoMT systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alsahafi, Yousef S. ; Khalid, Asmaa M. ; Hamza, Hanaa M. ; Hosny, Khalid M.</creator><creatorcontrib>Alsahafi, Yousef S. ; Khalid, Asmaa M. ; Hamza, Hanaa M. ; Hosny, Khalid M.</creatorcontrib><description>The Internet of Medical Things systems involve medical data transmissions between patients, medical experts, and medical centers over public networks. The sensitivity of the medical images' contents and the personal information in the medical images required high levels of security. Chaotic maps are successfully used in image encryption due to their high security and computational efficiency. Initial random sequences generate the keys for chaotic map confusion and diffusion processes. Selection of the initial parameters is the cornerstone of the success of chaotic maps in securing digital images. In this paper, the authors proposed utilizing the novel binary Coronavirus disease optimization algorithm to determine the optimal initial sequences for the chaotic maps that lead to the generation of the optimal secret keys. The proposed algorithm selects the optimal initial keys using a hybrid fitness function. The generated optimal secret keys are then used for medical image encryption/decryption. Several medical images from different modalities are utilized for testing, and the results are compared to the latest encryption techniques according to various criteria. The experimental results ensure the robustness of the proposed algorithm to various attacks and its superior performance to similar algorithms.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-024-09508-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Chaos theory ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Cybersecurity ; Data Mining and Knowledge Discovery ; Data transmission ; Digital imaging ; Digital mapping ; Encryption ; Health care facilities ; Image Processing and Computer Vision ; Internet of medical things ; Medical imaging ; Original Article ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing &amp; applications, 2024-05, Vol.36 (14), p.7705-7723</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-21ec0ee98f388382080099141ff8eee53141e4127e5abd6b6be597d8d7e210283</cites><orcidid>0000-0001-8065-8977 ; 0000-0003-1008-2612 ; 0000-0003-3218-7386 ; 0000-0002-4268-7918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-024-09508-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-024-09508-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Alsahafi, Yousef S.</creatorcontrib><creatorcontrib>Khalid, Asmaa M.</creatorcontrib><creatorcontrib>Hamza, Hanaa M.</creatorcontrib><creatorcontrib>Hosny, Khalid M.</creatorcontrib><title>New optimized chaotic encryption with BCOVIDOA for efficient security of medical images in IoMT systems</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>The Internet of Medical Things systems involve medical data transmissions between patients, medical experts, and medical centers over public networks. The sensitivity of the medical images' contents and the personal information in the medical images required high levels of security. Chaotic maps are successfully used in image encryption due to their high security and computational efficiency. Initial random sequences generate the keys for chaotic map confusion and diffusion processes. Selection of the initial parameters is the cornerstone of the success of chaotic maps in securing digital images. In this paper, the authors proposed utilizing the novel binary Coronavirus disease optimization algorithm to determine the optimal initial sequences for the chaotic maps that lead to the generation of the optimal secret keys. The proposed algorithm selects the optimal initial keys using a hybrid fitness function. The generated optimal secret keys are then used for medical image encryption/decryption. Several medical images from different modalities are utilized for testing, and the results are compared to the latest encryption techniques according to various criteria. The experimental results ensure the robustness of the proposed algorithm to various attacks and its superior performance to similar algorithms.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Chaos theory</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Cybersecurity</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data transmission</subject><subject>Digital imaging</subject><subject>Digital mapping</subject><subject>Encryption</subject><subject>Health care facilities</subject><subject>Image Processing and Computer Vision</subject><subject>Internet of medical things</subject><subject>Medical imaging</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6M7TycZSmvSkA3ha2VOuPWVRMXO1UVvh5DkNixmtHMvXdGh5BLBtcMoLgJABlnCfA0gTIDmbAjMmKpEImATB6TEZRpXOepOCVnIWwAIM1lNiKrVzxQt-tsYz-xpnpduc5qiq32fZy6lh5st6a30_n77G4-ocZ5isZYbbHtaEC997brqTO0wdrqakttU60wUNvSmXtZ0NCHDptwTk5MtQ148VvH5O3hfjF9Sp7nj7Pp5DnRvIAu4Qw1IJbSCCmF5CABypKlzBiJiJmILaaMF5hVyzpf5kvMyqKWdYGcAZdiTK6G3J13H3sMndq4vW_jSSVAFCXLOeNRxQeV9i4Ej0btfPzb94qB-gaqBqAqAlU_QBWLJjGYQhS3K_R_0f-4vgBGLHgS</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Alsahafi, Yousef S.</creator><creator>Khalid, Asmaa M.</creator><creator>Hamza, Hanaa M.</creator><creator>Hosny, Khalid M.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8065-8977</orcidid><orcidid>https://orcid.org/0000-0003-1008-2612</orcidid><orcidid>https://orcid.org/0000-0003-3218-7386</orcidid><orcidid>https://orcid.org/0000-0002-4268-7918</orcidid></search><sort><creationdate>20240501</creationdate><title>New optimized chaotic encryption with BCOVIDOA for efficient security of medical images in IoMT systems</title><author>Alsahafi, Yousef S. ; Khalid, Asmaa M. ; Hamza, Hanaa M. ; Hosny, Khalid M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-21ec0ee98f388382080099141ff8eee53141e4127e5abd6b6be597d8d7e210283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Chaos theory</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Cybersecurity</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data transmission</topic><topic>Digital imaging</topic><topic>Digital mapping</topic><topic>Encryption</topic><topic>Health care facilities</topic><topic>Image Processing and Computer Vision</topic><topic>Internet of medical things</topic><topic>Medical imaging</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alsahafi, Yousef S.</creatorcontrib><creatorcontrib>Khalid, Asmaa M.</creatorcontrib><creatorcontrib>Hamza, Hanaa M.</creatorcontrib><creatorcontrib>Hosny, Khalid M.</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alsahafi, Yousef S.</au><au>Khalid, Asmaa M.</au><au>Hamza, Hanaa M.</au><au>Hosny, Khalid M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New optimized chaotic encryption with BCOVIDOA for efficient security of medical images in IoMT systems</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>36</volume><issue>14</issue><spage>7705</spage><epage>7723</epage><pages>7705-7723</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The Internet of Medical Things systems involve medical data transmissions between patients, medical experts, and medical centers over public networks. The sensitivity of the medical images' contents and the personal information in the medical images required high levels of security. Chaotic maps are successfully used in image encryption due to their high security and computational efficiency. Initial random sequences generate the keys for chaotic map confusion and diffusion processes. Selection of the initial parameters is the cornerstone of the success of chaotic maps in securing digital images. In this paper, the authors proposed utilizing the novel binary Coronavirus disease optimization algorithm to determine the optimal initial sequences for the chaotic maps that lead to the generation of the optimal secret keys. The proposed algorithm selects the optimal initial keys using a hybrid fitness function. The generated optimal secret keys are then used for medical image encryption/decryption. Several medical images from different modalities are utilized for testing, and the results are compared to the latest encryption techniques according to various criteria. The experimental results ensure the robustness of the proposed algorithm to various attacks and its superior performance to similar algorithms.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-024-09508-1</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8065-8977</orcidid><orcidid>https://orcid.org/0000-0003-1008-2612</orcidid><orcidid>https://orcid.org/0000-0003-3218-7386</orcidid><orcidid>https://orcid.org/0000-0002-4268-7918</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2024-05, Vol.36 (14), p.7705-7723
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_3037916212
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Chaos theory
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Cybersecurity
Data Mining and Knowledge Discovery
Data transmission
Digital imaging
Digital mapping
Encryption
Health care facilities
Image Processing and Computer Vision
Internet of medical things
Medical imaging
Original Article
Probability and Statistics in Computer Science
title New optimized chaotic encryption with BCOVIDOA for efficient security of medical images in IoMT systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20optimized%20chaotic%20encryption%20with%20BCOVIDOA%20for%20efficient%20security%20of%20medical%20images%20in%20IoMT%20systems&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Alsahafi,%20Yousef%20S.&rft.date=2024-05-01&rft.volume=36&rft.issue=14&rft.spage=7705&rft.epage=7723&rft.pages=7705-7723&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-024-09508-1&rft_dat=%3Cproquest_cross%3E3037916212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037916212&rft_id=info:pmid/&rfr_iscdi=true