Weighted Poincaré Inequalities and Degenerate Elliptic and Parabolic Problems: An Approach via the Distance Function

We obtain weighted Poincaré inequalities in bounded domains, where the weight is given by a symmetric nonnegative definite matrix, which can degenerate on submanifolds. Furthermore, we investigate uniqueness and nonuniqueness of solutions to degenerate elliptic and parabolic problems, where the diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2024-04, Vol.60 (4), p.1421-1444
Hauptverfasser: Monticelli, D. D., Punzo, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain weighted Poincaré inequalities in bounded domains, where the weight is given by a symmetric nonnegative definite matrix, which can degenerate on submanifolds. Furthermore, we investigate uniqueness and nonuniqueness of solutions to degenerate elliptic and parabolic problems, where the diffusion matrix can degenerate on subsets of the boundary of the domain. Both the results are obtained by means of the distance function from the degeneracy set, which is used to construct suitable local sub– and supersolutions.
ISSN:0926-2601
1572-929X
DOI:10.1007/s11118-023-10094-5