Efficient classification of different medical image multimodalities based on simple CNN architecture and augmentation algorithms

Convolutional neural networks (CNN) are the best deep learning architecture to perform tumors classification for different imaging modalities: Us, X-ray, CT, and MRI. The scarcity of medical images and scarcity of resources are the contemporary problem for achieving successful classification. Theref...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optics (New Delhi) 2024-04, Vol.53 (2), p.775-787
Hauptverfasser: El-Shafai, Walid, Mahmoud, Amira A., Ali, Anas M., El-Rabaie, El-Sayed M., Taha, Taha E., El-Fishawy, Adel S., Zahran, Osama, El-Samie, Fathi E. Abd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 787
container_issue 2
container_start_page 775
container_title Journal of optics (New Delhi)
container_volume 53
creator El-Shafai, Walid
Mahmoud, Amira A.
Ali, Anas M.
El-Rabaie, El-Sayed M.
Taha, Taha E.
El-Fishawy, Adel S.
Zahran, Osama
El-Samie, Fathi E. Abd
description Convolutional neural networks (CNN) are the best deep learning architecture to perform tumors classification for different imaging modalities: Us, X-ray, CT, and MRI. The scarcity of medical images and scarcity of resources are the contemporary problem for achieving successful classification. Therefore, it is preferable to use a simple network that does not require training and implementation resources than to use complex or pre-trained CNN models. Simple networks make it easy to use in clinical diagnosis and on mobile platforms. In this paper, a proposed CNN architecture for medical image multimodalities classification is presented. This proposed network is simple and is directly trained by medical images which is better than using pre-trained deep learning networks. Firstly, the data augmentation process is applied to avoid data shortage, and then, the proposed CNN is trained using the resulted augmented data. Simulation results demonstrate the efficiency of the proposed CNN architecture for efficient classification. The proposed model is trained on medical Us, X-ray, CT, and MRI datasets from scratch, and it can achieve 92.7%, 91.1%, 100%, 100% accuracies for these datasets, respectively.
doi_str_mv 10.1007/s12596-022-01089-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3037835088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037835088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f2ceac476ca3cddd577ba31e7819a87b7e103a264f12ab3a246f3b82482a08a33</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEElXpH2CyxBw420nsjKgqHxIqC8zWxbFbo3wU2xnY-Om4DRIb09353vc5-c2yawq3FEDcBcrKusqBsRwoyDrnZ9kCalHkVQ1wfupZLiWjl9kqBNdACVVSlvUi-95Y67QzQyS6w7RME0Y3DmS0pHXWGn_c9aZN7x1xPe4M6acuun5ssXPRmUAaDKYlyRNcf-gMWW-3BL3eu2h0nLwhOLQEp12fUDMcu93oXdz34Sq7sNgFs_qty-z9YfO2fspfXh-f1_cvuWYCYm6ZNqgLUWnkum3bUogGOTVC0hqlaIShwJFVhaUMm9QVleWNZIVkCBI5X2Y3M_fgx8_JhKg-xskP6aTiwIXkJUiZVGxWaT-G4I1VB5_-7L8UBXUMW81hqxS2OoWtjmg-m0ISDzvj_9D_uH4A2MSE0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037835088</pqid></control><display><type>article</type><title>Efficient classification of different medical image multimodalities based on simple CNN architecture and augmentation algorithms</title><source>Springer Nature - Complete Springer Journals</source><creator>El-Shafai, Walid ; Mahmoud, Amira A. ; Ali, Anas M. ; El-Rabaie, El-Sayed M. ; Taha, Taha E. ; El-Fishawy, Adel S. ; Zahran, Osama ; El-Samie, Fathi E. Abd</creator><creatorcontrib>El-Shafai, Walid ; Mahmoud, Amira A. ; Ali, Anas M. ; El-Rabaie, El-Sayed M. ; Taha, Taha E. ; El-Fishawy, Adel S. ; Zahran, Osama ; El-Samie, Fathi E. Abd</creatorcontrib><description>Convolutional neural networks (CNN) are the best deep learning architecture to perform tumors classification for different imaging modalities: Us, X-ray, CT, and MRI. The scarcity of medical images and scarcity of resources are the contemporary problem for achieving successful classification. Therefore, it is preferable to use a simple network that does not require training and implementation resources than to use complex or pre-trained CNN models. Simple networks make it easy to use in clinical diagnosis and on mobile platforms. In this paper, a proposed CNN architecture for medical image multimodalities classification is presented. This proposed network is simple and is directly trained by medical images which is better than using pre-trained deep learning networks. Firstly, the data augmentation process is applied to avoid data shortage, and then, the proposed CNN is trained using the resulted augmented data. Simulation results demonstrate the efficiency of the proposed CNN architecture for efficient classification. The proposed model is trained on medical Us, X-ray, CT, and MRI datasets from scratch, and it can achieve 92.7%, 91.1%, 100%, 100% accuracies for these datasets, respectively.</description><identifier>ISSN: 0972-8821</identifier><identifier>EISSN: 0974-6900</identifier><identifier>DOI: 10.1007/s12596-022-01089-3</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algorithms ; Artificial neural networks ; Classification ; Computed tomography ; Contemporary problems ; Data augmentation ; Datasets ; Deep learning ; Image classification ; Lasers ; Machine learning ; Magnetic resonance imaging ; Medical imaging ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Research Article ; X ray imagery</subject><ispartof>Journal of optics (New Delhi), 2024-04, Vol.53 (2), p.775-787</ispartof><rights>The Author(s), under exclusive licence to The Optical Society of India 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-f2ceac476ca3cddd577ba31e7819a87b7e103a264f12ab3a246f3b82482a08a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12596-022-01089-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12596-022-01089-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>El-Shafai, Walid</creatorcontrib><creatorcontrib>Mahmoud, Amira A.</creatorcontrib><creatorcontrib>Ali, Anas M.</creatorcontrib><creatorcontrib>El-Rabaie, El-Sayed M.</creatorcontrib><creatorcontrib>Taha, Taha E.</creatorcontrib><creatorcontrib>El-Fishawy, Adel S.</creatorcontrib><creatorcontrib>Zahran, Osama</creatorcontrib><creatorcontrib>El-Samie, Fathi E. Abd</creatorcontrib><title>Efficient classification of different medical image multimodalities based on simple CNN architecture and augmentation algorithms</title><title>Journal of optics (New Delhi)</title><addtitle>J Opt</addtitle><description>Convolutional neural networks (CNN) are the best deep learning architecture to perform tumors classification for different imaging modalities: Us, X-ray, CT, and MRI. The scarcity of medical images and scarcity of resources are the contemporary problem for achieving successful classification. Therefore, it is preferable to use a simple network that does not require training and implementation resources than to use complex or pre-trained CNN models. Simple networks make it easy to use in clinical diagnosis and on mobile platforms. In this paper, a proposed CNN architecture for medical image multimodalities classification is presented. This proposed network is simple and is directly trained by medical images which is better than using pre-trained deep learning networks. Firstly, the data augmentation process is applied to avoid data shortage, and then, the proposed CNN is trained using the resulted augmented data. Simulation results demonstrate the efficiency of the proposed CNN architecture for efficient classification. The proposed model is trained on medical Us, X-ray, CT, and MRI datasets from scratch, and it can achieve 92.7%, 91.1%, 100%, 100% accuracies for these datasets, respectively.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computed tomography</subject><subject>Contemporary problems</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Image classification</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Research Article</subject><subject>X ray imagery</subject><issn>0972-8821</issn><issn>0974-6900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEElXpH2CyxBw420nsjKgqHxIqC8zWxbFbo3wU2xnY-Om4DRIb09353vc5-c2yawq3FEDcBcrKusqBsRwoyDrnZ9kCalHkVQ1wfupZLiWjl9kqBNdACVVSlvUi-95Y67QzQyS6w7RME0Y3DmS0pHXWGn_c9aZN7x1xPe4M6acuun5ssXPRmUAaDKYlyRNcf-gMWW-3BL3eu2h0nLwhOLQEp12fUDMcu93oXdz34Sq7sNgFs_qty-z9YfO2fspfXh-f1_cvuWYCYm6ZNqgLUWnkum3bUogGOTVC0hqlaIShwJFVhaUMm9QVleWNZIVkCBI5X2Y3M_fgx8_JhKg-xskP6aTiwIXkJUiZVGxWaT-G4I1VB5_-7L8UBXUMW81hqxS2OoWtjmg-m0ISDzvj_9D_uH4A2MSE0g</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>El-Shafai, Walid</creator><creator>Mahmoud, Amira A.</creator><creator>Ali, Anas M.</creator><creator>El-Rabaie, El-Sayed M.</creator><creator>Taha, Taha E.</creator><creator>El-Fishawy, Adel S.</creator><creator>Zahran, Osama</creator><creator>El-Samie, Fathi E. Abd</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>Efficient classification of different medical image multimodalities based on simple CNN architecture and augmentation algorithms</title><author>El-Shafai, Walid ; Mahmoud, Amira A. ; Ali, Anas M. ; El-Rabaie, El-Sayed M. ; Taha, Taha E. ; El-Fishawy, Adel S. ; Zahran, Osama ; El-Samie, Fathi E. Abd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f2ceac476ca3cddd577ba31e7819a87b7e103a264f12ab3a246f3b82482a08a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computed tomography</topic><topic>Contemporary problems</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Image classification</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Research Article</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Shafai, Walid</creatorcontrib><creatorcontrib>Mahmoud, Amira A.</creatorcontrib><creatorcontrib>Ali, Anas M.</creatorcontrib><creatorcontrib>El-Rabaie, El-Sayed M.</creatorcontrib><creatorcontrib>Taha, Taha E.</creatorcontrib><creatorcontrib>El-Fishawy, Adel S.</creatorcontrib><creatorcontrib>Zahran, Osama</creatorcontrib><creatorcontrib>El-Samie, Fathi E. Abd</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of optics (New Delhi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Shafai, Walid</au><au>Mahmoud, Amira A.</au><au>Ali, Anas M.</au><au>El-Rabaie, El-Sayed M.</au><au>Taha, Taha E.</au><au>El-Fishawy, Adel S.</au><au>Zahran, Osama</au><au>El-Samie, Fathi E. Abd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient classification of different medical image multimodalities based on simple CNN architecture and augmentation algorithms</atitle><jtitle>Journal of optics (New Delhi)</jtitle><stitle>J Opt</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>53</volume><issue>2</issue><spage>775</spage><epage>787</epage><pages>775-787</pages><issn>0972-8821</issn><eissn>0974-6900</eissn><abstract>Convolutional neural networks (CNN) are the best deep learning architecture to perform tumors classification for different imaging modalities: Us, X-ray, CT, and MRI. The scarcity of medical images and scarcity of resources are the contemporary problem for achieving successful classification. Therefore, it is preferable to use a simple network that does not require training and implementation resources than to use complex or pre-trained CNN models. Simple networks make it easy to use in clinical diagnosis and on mobile platforms. In this paper, a proposed CNN architecture for medical image multimodalities classification is presented. This proposed network is simple and is directly trained by medical images which is better than using pre-trained deep learning networks. Firstly, the data augmentation process is applied to avoid data shortage, and then, the proposed CNN is trained using the resulted augmented data. Simulation results demonstrate the efficiency of the proposed CNN architecture for efficient classification. The proposed model is trained on medical Us, X-ray, CT, and MRI datasets from scratch, and it can achieve 92.7%, 91.1%, 100%, 100% accuracies for these datasets, respectively.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12596-022-01089-3</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0972-8821
ispartof Journal of optics (New Delhi), 2024-04, Vol.53 (2), p.775-787
issn 0972-8821
0974-6900
language eng
recordid cdi_proquest_journals_3037835088
source Springer Nature - Complete Springer Journals
subjects Algorithms
Artificial neural networks
Classification
Computed tomography
Contemporary problems
Data augmentation
Datasets
Deep learning
Image classification
Lasers
Machine learning
Magnetic resonance imaging
Medical imaging
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Research Article
X ray imagery
title Efficient classification of different medical image multimodalities based on simple CNN architecture and augmentation algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20classification%20of%20different%20medical%20image%20multimodalities%20based%20on%20simple%20CNN%20architecture%20and%20augmentation%20algorithms&rft.jtitle=Journal%20of%20optics%20(New%20Delhi)&rft.au=El-Shafai,%20Walid&rft.date=2024-04-01&rft.volume=53&rft.issue=2&rft.spage=775&rft.epage=787&rft.pages=775-787&rft.issn=0972-8821&rft.eissn=0974-6900&rft_id=info:doi/10.1007/s12596-022-01089-3&rft_dat=%3Cproquest_cross%3E3037835088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037835088&rft_id=info:pmid/&rfr_iscdi=true