CPT: a pre-trained unbalanced transformer for both Chinese language understanding and generation
In this paper, we take the advantage of previous pre-trained models (PTMs) and propose a novel Chinese pre-trained unbalanced transformer (CPT). Different from previous Chinese PTMs, CPT is designed to utilize the shared knowledge between natural language understanding (NLU) and natural language gen...
Gespeichert in:
Veröffentlicht in: | Science China. Information sciences 2024-05, Vol.67 (5), p.152102, Article 152102 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 152102 |
container_title | Science China. Information sciences |
container_volume | 67 |
creator | Shao, Yunfan Geng, Zhichao Liu, Yitao Dai, Junqi Yan, Hang Yang, Fei Li, Zhe Bao, Hujun Qiu, Xipeng |
description | In this paper, we take the advantage of previous pre-trained models (PTMs) and propose a novel Chinese pre-trained unbalanced transformer (CPT). Different from previous Chinese PTMs, CPT is designed to utilize the shared knowledge between natural language understanding (NLU) and natural language generation (NLG) to boost the performance. CPT consists of three parts: a shared encoder, an understanding decoder, and a generation decoder. Two specific decoders with a shared encoder are pre-trained with masked language modeling (MLM) and denoising auto-encoding (DAE) tasks, respectively. With the partially shared architecture and multi-task pre-training, CPT can (1) learn specific knowledge of both NLU or NLG tasks with two decoders and (2) be fine-tuned flexibly that fully exploits the potential of the model. Moreover, the unbalanced transformer saves the computational and storage cost, which makes CPT competitive and greatly accelerates the inference of text generation. Experimental results on a wide range of Chinese NLU and NLG tasks show the effectiveness of CPT. |
doi_str_mv | 10.1007/s11432-021-3536-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3037834973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037834973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-9648c4790f84239fefdf1c23d74613ace46b5ee9634f7ed3087c281c57369cdf3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhhdRsNT-AG8Bz9FkJ5tsvEnxCwp6qOAtptnJdkubrcn24L83ZQVPYi7vEJ53Bp6iuOTsmjOmbhLnAkrKSk6hAkmrk2LCa6kp11yf5lkqQRXA-3kxS2nD8gNgpaonxcf8dXlLLNlHpEO0XcCGHMLKbm1wecxfIfk-7jCSHGTVD2syX2csIclMe7At5kKDMQ02NF1oSQ7SYsBoh64PF8WZt9uEs5-cFm8P98v5E128PD7P7xbUgRAD1VLUTijNfC1K0B5947kroVFCcrAOhVxViFqC8AobYLVyZc1dpUBq13iYFlfj3n3sPw-YBrPpDzHkkwYYqBqEzgb-oaSsOPBM8ZFysU8pojf72O1s_DKcmaNxMxo32bg5GjdV7pRjJ2U2tBh_N_9d-gYR1YKK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037665131</pqid></control><display><type>article</type><title>CPT: a pre-trained unbalanced transformer for both Chinese language understanding and generation</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shao, Yunfan ; Geng, Zhichao ; Liu, Yitao ; Dai, Junqi ; Yan, Hang ; Yang, Fei ; Li, Zhe ; Bao, Hujun ; Qiu, Xipeng</creator><creatorcontrib>Shao, Yunfan ; Geng, Zhichao ; Liu, Yitao ; Dai, Junqi ; Yan, Hang ; Yang, Fei ; Li, Zhe ; Bao, Hujun ; Qiu, Xipeng</creatorcontrib><description>In this paper, we take the advantage of previous pre-trained models (PTMs) and propose a novel Chinese pre-trained unbalanced transformer (CPT). Different from previous Chinese PTMs, CPT is designed to utilize the shared knowledge between natural language understanding (NLU) and natural language generation (NLG) to boost the performance. CPT consists of three parts: a shared encoder, an understanding decoder, and a generation decoder. Two specific decoders with a shared encoder are pre-trained with masked language modeling (MLM) and denoising auto-encoding (DAE) tasks, respectively. With the partially shared architecture and multi-task pre-training, CPT can (1) learn specific knowledge of both NLU or NLG tasks with two decoders and (2) be fine-tuned flexibly that fully exploits the potential of the model. Moreover, the unbalanced transformer saves the computational and storage cost, which makes CPT competitive and greatly accelerates the inference of text generation. Experimental results on a wide range of Chinese NLU and NLG tasks show the effectiveness of CPT.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-021-3536-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Coders ; Computer Science ; Decoders ; Information Systems and Communication Service ; Natural language ; Research Paper ; Speech recognition ; Transformers</subject><ispartof>Science China. Information sciences, 2024-05, Vol.67 (5), p.152102, Article 152102</ispartof><rights>Science China Press 2024</rights><rights>Science China Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-9648c4790f84239fefdf1c23d74613ace46b5ee9634f7ed3087c281c57369cdf3</citedby><cites>FETCH-LOGICAL-c344t-9648c4790f84239fefdf1c23d74613ace46b5ee9634f7ed3087c281c57369cdf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-021-3536-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11432-021-3536-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Shao, Yunfan</creatorcontrib><creatorcontrib>Geng, Zhichao</creatorcontrib><creatorcontrib>Liu, Yitao</creatorcontrib><creatorcontrib>Dai, Junqi</creatorcontrib><creatorcontrib>Yan, Hang</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Bao, Hujun</creatorcontrib><creatorcontrib>Qiu, Xipeng</creatorcontrib><title>CPT: a pre-trained unbalanced transformer for both Chinese language understanding and generation</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><description>In this paper, we take the advantage of previous pre-trained models (PTMs) and propose a novel Chinese pre-trained unbalanced transformer (CPT). Different from previous Chinese PTMs, CPT is designed to utilize the shared knowledge between natural language understanding (NLU) and natural language generation (NLG) to boost the performance. CPT consists of three parts: a shared encoder, an understanding decoder, and a generation decoder. Two specific decoders with a shared encoder are pre-trained with masked language modeling (MLM) and denoising auto-encoding (DAE) tasks, respectively. With the partially shared architecture and multi-task pre-training, CPT can (1) learn specific knowledge of both NLU or NLG tasks with two decoders and (2) be fine-tuned flexibly that fully exploits the potential of the model. Moreover, the unbalanced transformer saves the computational and storage cost, which makes CPT competitive and greatly accelerates the inference of text generation. Experimental results on a wide range of Chinese NLU and NLG tasks show the effectiveness of CPT.</description><subject>Coders</subject><subject>Computer Science</subject><subject>Decoders</subject><subject>Information Systems and Communication Service</subject><subject>Natural language</subject><subject>Research Paper</subject><subject>Speech recognition</subject><subject>Transformers</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhhdRsNT-AG8Bz9FkJ5tsvEnxCwp6qOAtptnJdkubrcn24L83ZQVPYi7vEJ53Bp6iuOTsmjOmbhLnAkrKSk6hAkmrk2LCa6kp11yf5lkqQRXA-3kxS2nD8gNgpaonxcf8dXlLLNlHpEO0XcCGHMLKbm1wecxfIfk-7jCSHGTVD2syX2csIclMe7At5kKDMQ02NF1oSQ7SYsBoh64PF8WZt9uEs5-cFm8P98v5E128PD7P7xbUgRAD1VLUTijNfC1K0B5947kroVFCcrAOhVxViFqC8AobYLVyZc1dpUBq13iYFlfj3n3sPw-YBrPpDzHkkwYYqBqEzgb-oaSsOPBM8ZFysU8pojf72O1s_DKcmaNxMxo32bg5GjdV7pRjJ2U2tBh_N_9d-gYR1YKK</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Shao, Yunfan</creator><creator>Geng, Zhichao</creator><creator>Liu, Yitao</creator><creator>Dai, Junqi</creator><creator>Yan, Hang</creator><creator>Yang, Fei</creator><creator>Li, Zhe</creator><creator>Bao, Hujun</creator><creator>Qiu, Xipeng</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240501</creationdate><title>CPT: a pre-trained unbalanced transformer for both Chinese language understanding and generation</title><author>Shao, Yunfan ; Geng, Zhichao ; Liu, Yitao ; Dai, Junqi ; Yan, Hang ; Yang, Fei ; Li, Zhe ; Bao, Hujun ; Qiu, Xipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-9648c4790f84239fefdf1c23d74613ace46b5ee9634f7ed3087c281c57369cdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coders</topic><topic>Computer Science</topic><topic>Decoders</topic><topic>Information Systems and Communication Service</topic><topic>Natural language</topic><topic>Research Paper</topic><topic>Speech recognition</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Yunfan</creatorcontrib><creatorcontrib>Geng, Zhichao</creatorcontrib><creatorcontrib>Liu, Yitao</creatorcontrib><creatorcontrib>Dai, Junqi</creatorcontrib><creatorcontrib>Yan, Hang</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Bao, Hujun</creatorcontrib><creatorcontrib>Qiu, Xipeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Yunfan</au><au>Geng, Zhichao</au><au>Liu, Yitao</au><au>Dai, Junqi</au><au>Yan, Hang</au><au>Yang, Fei</au><au>Li, Zhe</au><au>Bao, Hujun</au><au>Qiu, Xipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CPT: a pre-trained unbalanced transformer for both Chinese language understanding and generation</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>67</volume><issue>5</issue><spage>152102</spage><pages>152102-</pages><artnum>152102</artnum><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>In this paper, we take the advantage of previous pre-trained models (PTMs) and propose a novel Chinese pre-trained unbalanced transformer (CPT). Different from previous Chinese PTMs, CPT is designed to utilize the shared knowledge between natural language understanding (NLU) and natural language generation (NLG) to boost the performance. CPT consists of three parts: a shared encoder, an understanding decoder, and a generation decoder. Two specific decoders with a shared encoder are pre-trained with masked language modeling (MLM) and denoising auto-encoding (DAE) tasks, respectively. With the partially shared architecture and multi-task pre-training, CPT can (1) learn specific knowledge of both NLU or NLG tasks with two decoders and (2) be fine-tuned flexibly that fully exploits the potential of the model. Moreover, the unbalanced transformer saves the computational and storage cost, which makes CPT competitive and greatly accelerates the inference of text generation. Experimental results on a wide range of Chinese NLU and NLG tasks show the effectiveness of CPT.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11432-021-3536-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-733X |
ispartof | Science China. Information sciences, 2024-05, Vol.67 (5), p.152102, Article 152102 |
issn | 1674-733X 1869-1919 |
language | eng |
recordid | cdi_proquest_journals_3037834973 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Coders Computer Science Decoders Information Systems and Communication Service Natural language Research Paper Speech recognition Transformers |
title | CPT: a pre-trained unbalanced transformer for both Chinese language understanding and generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CPT:%20a%20pre-trained%20unbalanced%20transformer%20for%20both%20Chinese%20language%20understanding%20and%20generation&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Shao,%20Yunfan&rft.date=2024-05-01&rft.volume=67&rft.issue=5&rft.spage=152102&rft.pages=152102-&rft.artnum=152102&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-021-3536-5&rft_dat=%3Cproquest_cross%3E3037834973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037665131&rft_id=info:pmid/&rfr_iscdi=true |