On axially rational regular functions and Schur analysis in the Clifford-Appell setting

In this paper we start the study of Schur analysis for Cauchy–Fueter regular quaternionic-valued functions, i.e. null solutions of the Cauchy–Fueter operator in R 4 . The novelty of the approach developed in this paper is that we consider axially regular functions, i.e. functions spanned by the so-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis and mathematical physics 2024-06, Vol.14 (3), Article 41
Hauptverfasser: Alpay, Daniel, Colombo, Fabrizio, De Martino, Antonino, Diki, Kamal, Sabadini, Irene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Analysis and mathematical physics
container_volume 14
creator Alpay, Daniel
Colombo, Fabrizio
De Martino, Antonino
Diki, Kamal
Sabadini, Irene
description In this paper we start the study of Schur analysis for Cauchy–Fueter regular quaternionic-valued functions, i.e. null solutions of the Cauchy–Fueter operator in R 4 . The novelty of the approach developed in this paper is that we consider axially regular functions, i.e. functions spanned by the so-called Clifford-Appell polynomials. This type of functions arises naturally from two well-known extension results in hypercomplex analysis: the Fueter mapping theorem and the generalized Cauchy–Kovalevskaya (GCK) extension. These results allow one to obtain axially regular functions starting from analytic functions of one real or complex variable. Precisely, in the Fueter theorem two operators play a role. The first one is the so-called slice operator, which extends holomorphic functions of one complex variable to slice hyperholomorphic functions of a quaternionic variable. The second operator is the Laplace operator in four real variables, that maps slice hyperholomorphic functions to axially regular functions. On the other hand, the generalized CK-extension gives a characterization of axially regular functions in terms of their restriction to the real line. In this paper we use these two extensions to define two notions of rational function in the regular setting. For our purposes, the notion coming from the generalized CK-extension is the most suitable. Our results allow to consider the Hardy space, Schur multipliers and their relation with realizations in the framework of Clifford-Appell polynomials. We also introduce two notions of regular Blaschke factors, through the Fueter theorem and the generalized CK-extension.
doi_str_mv 10.1007/s13324-024-00902-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3037834818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037834818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-b6e2d0f135aec9bd1f74660893eb8b4261982987ed31bb503acff5d9d5711a093</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLgsu4f8BTwHH1pPpoel8UvWPCgoreQtslul5jWpAX339tS0ZuH4Q2PmWEYhC4pXFOA_CZRxjJOYAIUkBFxghZUSk4yJt5Pf7lU52iV0gEAKBeSy3yB3p4CNl-N8f6Io-mbNhiPo90N3kTshlBNr4RNqPFztR_iyIw_pibhJuB-b_HGN861sSbrrrPe42T7vgm7C3TmjE929XOX6PXu9mXzQLZP94-b9ZZUjPKelNJmNTjKhLFVUdbU5VxKUAWzpSp5JmmhskLltma0LAUwUzkn6qIWOaUGCrZEV3NuF9vPwaZeH9ohjh2TZsByxbiialRls6qKbUrROt3F5sPEo6agpw31vKGGCdOGWowmNpvSKA47G_-i_3F9AwSUdEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037834818</pqid></control><display><type>article</type><title>On axially rational regular functions and Schur analysis in the Clifford-Appell setting</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alpay, Daniel ; Colombo, Fabrizio ; De Martino, Antonino ; Diki, Kamal ; Sabadini, Irene</creator><creatorcontrib>Alpay, Daniel ; Colombo, Fabrizio ; De Martino, Antonino ; Diki, Kamal ; Sabadini, Irene</creatorcontrib><description>In this paper we start the study of Schur analysis for Cauchy–Fueter regular quaternionic-valued functions, i.e. null solutions of the Cauchy–Fueter operator in R 4 . The novelty of the approach developed in this paper is that we consider axially regular functions, i.e. functions spanned by the so-called Clifford-Appell polynomials. This type of functions arises naturally from two well-known extension results in hypercomplex analysis: the Fueter mapping theorem and the generalized Cauchy–Kovalevskaya (GCK) extension. These results allow one to obtain axially regular functions starting from analytic functions of one real or complex variable. Precisely, in the Fueter theorem two operators play a role. The first one is the so-called slice operator, which extends holomorphic functions of one complex variable to slice hyperholomorphic functions of a quaternionic variable. The second operator is the Laplace operator in four real variables, that maps slice hyperholomorphic functions to axially regular functions. On the other hand, the generalized CK-extension gives a characterization of axially regular functions in terms of their restriction to the real line. In this paper we use these two extensions to define two notions of rational function in the regular setting. For our purposes, the notion coming from the generalized CK-extension is the most suitable. Our results allow to consider the Hardy space, Schur multipliers and their relation with realizations in the framework of Clifford-Appell polynomials. We also introduce two notions of regular Blaschke factors, through the Fueter theorem and the generalized CK-extension.</description><identifier>ISSN: 1664-2368</identifier><identifier>EISSN: 1664-235X</identifier><identifier>DOI: 10.1007/s13324-024-00902-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Analytic functions ; Complex variables ; Mathematical analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Polynomials ; Rational functions ; Real variables ; Theorems</subject><ispartof>Analysis and mathematical physics, 2024-06, Vol.14 (3), Article 41</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-b6e2d0f135aec9bd1f74660893eb8b4261982987ed31bb503acff5d9d5711a093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13324-024-00902-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13324-024-00902-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Alpay, Daniel</creatorcontrib><creatorcontrib>Colombo, Fabrizio</creatorcontrib><creatorcontrib>De Martino, Antonino</creatorcontrib><creatorcontrib>Diki, Kamal</creatorcontrib><creatorcontrib>Sabadini, Irene</creatorcontrib><title>On axially rational regular functions and Schur analysis in the Clifford-Appell setting</title><title>Analysis and mathematical physics</title><addtitle>Anal.Math.Phys</addtitle><description>In this paper we start the study of Schur analysis for Cauchy–Fueter regular quaternionic-valued functions, i.e. null solutions of the Cauchy–Fueter operator in R 4 . The novelty of the approach developed in this paper is that we consider axially regular functions, i.e. functions spanned by the so-called Clifford-Appell polynomials. This type of functions arises naturally from two well-known extension results in hypercomplex analysis: the Fueter mapping theorem and the generalized Cauchy–Kovalevskaya (GCK) extension. These results allow one to obtain axially regular functions starting from analytic functions of one real or complex variable. Precisely, in the Fueter theorem two operators play a role. The first one is the so-called slice operator, which extends holomorphic functions of one complex variable to slice hyperholomorphic functions of a quaternionic variable. The second operator is the Laplace operator in four real variables, that maps slice hyperholomorphic functions to axially regular functions. On the other hand, the generalized CK-extension gives a characterization of axially regular functions in terms of their restriction to the real line. In this paper we use these two extensions to define two notions of rational function in the regular setting. For our purposes, the notion coming from the generalized CK-extension is the most suitable. Our results allow to consider the Hardy space, Schur multipliers and their relation with realizations in the framework of Clifford-Appell polynomials. We also introduce two notions of regular Blaschke factors, through the Fueter theorem and the generalized CK-extension.</description><subject>Analysis</subject><subject>Analytic functions</subject><subject>Complex variables</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><subject>Rational functions</subject><subject>Real variables</subject><subject>Theorems</subject><issn>1664-2368</issn><issn>1664-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UE1LxDAUDKLgsu4f8BTwHH1pPpoel8UvWPCgoreQtslul5jWpAX339tS0ZuH4Q2PmWEYhC4pXFOA_CZRxjJOYAIUkBFxghZUSk4yJt5Pf7lU52iV0gEAKBeSy3yB3p4CNl-N8f6Io-mbNhiPo90N3kTshlBNr4RNqPFztR_iyIw_pibhJuB-b_HGN861sSbrrrPe42T7vgm7C3TmjE929XOX6PXu9mXzQLZP94-b9ZZUjPKelNJmNTjKhLFVUdbU5VxKUAWzpSp5JmmhskLltma0LAUwUzkn6qIWOaUGCrZEV3NuF9vPwaZeH9ohjh2TZsByxbiialRls6qKbUrROt3F5sPEo6agpw31vKGGCdOGWowmNpvSKA47G_-i_3F9AwSUdEI</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Alpay, Daniel</creator><creator>Colombo, Fabrizio</creator><creator>De Martino, Antonino</creator><creator>Diki, Kamal</creator><creator>Sabadini, Irene</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>On axially rational regular functions and Schur analysis in the Clifford-Appell setting</title><author>Alpay, Daniel ; Colombo, Fabrizio ; De Martino, Antonino ; Diki, Kamal ; Sabadini, Irene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-b6e2d0f135aec9bd1f74660893eb8b4261982987ed31bb503acff5d9d5711a093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Analytic functions</topic><topic>Complex variables</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><topic>Rational functions</topic><topic>Real variables</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alpay, Daniel</creatorcontrib><creatorcontrib>Colombo, Fabrizio</creatorcontrib><creatorcontrib>De Martino, Antonino</creatorcontrib><creatorcontrib>Diki, Kamal</creatorcontrib><creatorcontrib>Sabadini, Irene</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Analysis and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alpay, Daniel</au><au>Colombo, Fabrizio</au><au>De Martino, Antonino</au><au>Diki, Kamal</au><au>Sabadini, Irene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On axially rational regular functions and Schur analysis in the Clifford-Appell setting</atitle><jtitle>Analysis and mathematical physics</jtitle><stitle>Anal.Math.Phys</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>14</volume><issue>3</issue><artnum>41</artnum><issn>1664-2368</issn><eissn>1664-235X</eissn><abstract>In this paper we start the study of Schur analysis for Cauchy–Fueter regular quaternionic-valued functions, i.e. null solutions of the Cauchy–Fueter operator in R 4 . The novelty of the approach developed in this paper is that we consider axially regular functions, i.e. functions spanned by the so-called Clifford-Appell polynomials. This type of functions arises naturally from two well-known extension results in hypercomplex analysis: the Fueter mapping theorem and the generalized Cauchy–Kovalevskaya (GCK) extension. These results allow one to obtain axially regular functions starting from analytic functions of one real or complex variable. Precisely, in the Fueter theorem two operators play a role. The first one is the so-called slice operator, which extends holomorphic functions of one complex variable to slice hyperholomorphic functions of a quaternionic variable. The second operator is the Laplace operator in four real variables, that maps slice hyperholomorphic functions to axially regular functions. On the other hand, the generalized CK-extension gives a characterization of axially regular functions in terms of their restriction to the real line. In this paper we use these two extensions to define two notions of rational function in the regular setting. For our purposes, the notion coming from the generalized CK-extension is the most suitable. Our results allow to consider the Hardy space, Schur multipliers and their relation with realizations in the framework of Clifford-Appell polynomials. We also introduce two notions of regular Blaschke factors, through the Fueter theorem and the generalized CK-extension.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13324-024-00902-5</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-2368
ispartof Analysis and mathematical physics, 2024-06, Vol.14 (3), Article 41
issn 1664-2368
1664-235X
language eng
recordid cdi_proquest_journals_3037834818
source SpringerLink Journals - AutoHoldings
subjects Analysis
Analytic functions
Complex variables
Mathematical analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Operators (mathematics)
Polynomials
Rational functions
Real variables
Theorems
title On axially rational regular functions and Schur analysis in the Clifford-Appell setting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20axially%20rational%20regular%20functions%20and%20Schur%20analysis%20in%20the%20Clifford-Appell%20setting&rft.jtitle=Analysis%20and%20mathematical%20physics&rft.au=Alpay,%20Daniel&rft.date=2024-06-01&rft.volume=14&rft.issue=3&rft.artnum=41&rft.issn=1664-2368&rft.eissn=1664-235X&rft_id=info:doi/10.1007/s13324-024-00902-5&rft_dat=%3Cproquest_cross%3E3037834818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037834818&rft_id=info:pmid/&rfr_iscdi=true