Data-driven methods for quantitative imaging
In the field of quantitative imaging, the image information at a pixel or voxel in an underlying domain entails crucial information about the imaged matter. This is particularly important in medical imaging applications, such as quantitative Magnetic Resonance Imaging (qMRI), where quantitative maps...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dong, Guozhi Flaschel, Moritz Hintermüller, Michael Papafitsoros, Kostas Sirotenko, Clemens Tabelow, Karsten |
description | In the field of quantitative imaging, the image information at a pixel or voxel in an underlying domain entails crucial information about the imaged matter. This is particularly important in medical imaging applications, such as quantitative Magnetic Resonance Imaging (qMRI), where quantitative maps of biophysical parameters can characterize the imaged tissue and thus lead to more accurate diagnoses. Such quantitative values can also be useful in subsequent, automatized classification tasks in order to discriminate normal from abnormal tissue, for instance. The accurate reconstruction of these quantitative maps is typically achieved by solving two coupled inverse problems which involve a (forward) measurement operator, typically ill-posed, and a physical process that links the wanted quantitative parameters to the reconstructed qualitative image, given some underlying measurement data. In this review, by considering qMRI as a prototypical application, we provide a mathematically-oriented overview on how data-driven approaches can be employed in these inverse problems eventually improving the reconstruction of the associated quantitative maps. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3037662300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037662300</sourcerecordid><originalsourceid>FETCH-proquest_journals_30376623003</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcUksSdRNKcosS81TyE0tychPKVZIyy9SKCxNzCvJLEksAcooZOYmpmfmpfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyxgbG5mZmRsYGBMXGqAKDeMdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037662300</pqid></control><display><type>article</type><title>Data-driven methods for quantitative imaging</title><source>Free E- Journals</source><creator>Dong, Guozhi ; Flaschel, Moritz ; Hintermüller, Michael ; Papafitsoros, Kostas ; Sirotenko, Clemens ; Tabelow, Karsten</creator><creatorcontrib>Dong, Guozhi ; Flaschel, Moritz ; Hintermüller, Michael ; Papafitsoros, Kostas ; Sirotenko, Clemens ; Tabelow, Karsten</creatorcontrib><description>In the field of quantitative imaging, the image information at a pixel or voxel in an underlying domain entails crucial information about the imaged matter. This is particularly important in medical imaging applications, such as quantitative Magnetic Resonance Imaging (qMRI), where quantitative maps of biophysical parameters can characterize the imaged tissue and thus lead to more accurate diagnoses. Such quantitative values can also be useful in subsequent, automatized classification tasks in order to discriminate normal from abnormal tissue, for instance. The accurate reconstruction of these quantitative maps is typically achieved by solving two coupled inverse problems which involve a (forward) measurement operator, typically ill-posed, and a physical process that links the wanted quantitative parameters to the reconstructed qualitative image, given some underlying measurement data. In this review, by considering qMRI as a prototypical application, we provide a mathematically-oriented overview on how data-driven approaches can be employed in these inverse problems eventually improving the reconstruction of the associated quantitative maps.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Image reconstruction ; Inverse problems ; Magnetic resonance imaging ; Mathematical analysis ; Medical imaging ; Parameters ; Qualitative analysis</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Dong, Guozhi</creatorcontrib><creatorcontrib>Flaschel, Moritz</creatorcontrib><creatorcontrib>Hintermüller, Michael</creatorcontrib><creatorcontrib>Papafitsoros, Kostas</creatorcontrib><creatorcontrib>Sirotenko, Clemens</creatorcontrib><creatorcontrib>Tabelow, Karsten</creatorcontrib><title>Data-driven methods for quantitative imaging</title><title>arXiv.org</title><description>In the field of quantitative imaging, the image information at a pixel or voxel in an underlying domain entails crucial information about the imaged matter. This is particularly important in medical imaging applications, such as quantitative Magnetic Resonance Imaging (qMRI), where quantitative maps of biophysical parameters can characterize the imaged tissue and thus lead to more accurate diagnoses. Such quantitative values can also be useful in subsequent, automatized classification tasks in order to discriminate normal from abnormal tissue, for instance. The accurate reconstruction of these quantitative maps is typically achieved by solving two coupled inverse problems which involve a (forward) measurement operator, typically ill-posed, and a physical process that links the wanted quantitative parameters to the reconstructed qualitative image, given some underlying measurement data. In this review, by considering qMRI as a prototypical application, we provide a mathematically-oriented overview on how data-driven approaches can be employed in these inverse problems eventually improving the reconstruction of the associated quantitative maps.</description><subject>Image reconstruction</subject><subject>Inverse problems</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Medical imaging</subject><subject>Parameters</subject><subject>Qualitative analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcUksSdRNKcosS81TyE0tychPKVZIyy9SKCxNzCvJLEksAcooZOYmpmfmpfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyxgbG5mZmRsYGBMXGqAKDeMdI</recordid><startdate>20240411</startdate><enddate>20240411</enddate><creator>Dong, Guozhi</creator><creator>Flaschel, Moritz</creator><creator>Hintermüller, Michael</creator><creator>Papafitsoros, Kostas</creator><creator>Sirotenko, Clemens</creator><creator>Tabelow, Karsten</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240411</creationdate><title>Data-driven methods for quantitative imaging</title><author>Dong, Guozhi ; Flaschel, Moritz ; Hintermüller, Michael ; Papafitsoros, Kostas ; Sirotenko, Clemens ; Tabelow, Karsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30376623003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Image reconstruction</topic><topic>Inverse problems</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Medical imaging</topic><topic>Parameters</topic><topic>Qualitative analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Dong, Guozhi</creatorcontrib><creatorcontrib>Flaschel, Moritz</creatorcontrib><creatorcontrib>Hintermüller, Michael</creatorcontrib><creatorcontrib>Papafitsoros, Kostas</creatorcontrib><creatorcontrib>Sirotenko, Clemens</creatorcontrib><creatorcontrib>Tabelow, Karsten</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Guozhi</au><au>Flaschel, Moritz</au><au>Hintermüller, Michael</au><au>Papafitsoros, Kostas</au><au>Sirotenko, Clemens</au><au>Tabelow, Karsten</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Data-driven methods for quantitative imaging</atitle><jtitle>arXiv.org</jtitle><date>2024-04-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In the field of quantitative imaging, the image information at a pixel or voxel in an underlying domain entails crucial information about the imaged matter. This is particularly important in medical imaging applications, such as quantitative Magnetic Resonance Imaging (qMRI), where quantitative maps of biophysical parameters can characterize the imaged tissue and thus lead to more accurate diagnoses. Such quantitative values can also be useful in subsequent, automatized classification tasks in order to discriminate normal from abnormal tissue, for instance. The accurate reconstruction of these quantitative maps is typically achieved by solving two coupled inverse problems which involve a (forward) measurement operator, typically ill-posed, and a physical process that links the wanted quantitative parameters to the reconstructed qualitative image, given some underlying measurement data. In this review, by considering qMRI as a prototypical application, we provide a mathematically-oriented overview on how data-driven approaches can be employed in these inverse problems eventually improving the reconstruction of the associated quantitative maps.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3037662300 |
source | Free E- Journals |
subjects | Image reconstruction Inverse problems Magnetic resonance imaging Mathematical analysis Medical imaging Parameters Qualitative analysis |
title | Data-driven methods for quantitative imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Data-driven%20methods%20for%20quantitative%20imaging&rft.jtitle=arXiv.org&rft.au=Dong,%20Guozhi&rft.date=2024-04-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3037662300%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037662300&rft_id=info:pmid/&rfr_iscdi=true |