Data-driven methods for quantitative imaging

In the field of quantitative imaging, the image information at a pixel or voxel in an underlying domain entails crucial information about the imaged matter. This is particularly important in medical imaging applications, such as quantitative Magnetic Resonance Imaging (qMRI), where quantitative maps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Dong, Guozhi, Flaschel, Moritz, Hintermüller, Michael, Papafitsoros, Kostas, Sirotenko, Clemens, Tabelow, Karsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dong, Guozhi
Flaschel, Moritz
Hintermüller, Michael
Papafitsoros, Kostas
Sirotenko, Clemens
Tabelow, Karsten
description In the field of quantitative imaging, the image information at a pixel or voxel in an underlying domain entails crucial information about the imaged matter. This is particularly important in medical imaging applications, such as quantitative Magnetic Resonance Imaging (qMRI), where quantitative maps of biophysical parameters can characterize the imaged tissue and thus lead to more accurate diagnoses. Such quantitative values can also be useful in subsequent, automatized classification tasks in order to discriminate normal from abnormal tissue, for instance. The accurate reconstruction of these quantitative maps is typically achieved by solving two coupled inverse problems which involve a (forward) measurement operator, typically ill-posed, and a physical process that links the wanted quantitative parameters to the reconstructed qualitative image, given some underlying measurement data. In this review, by considering qMRI as a prototypical application, we provide a mathematically-oriented overview on how data-driven approaches can be employed in these inverse problems eventually improving the reconstruction of the associated quantitative maps.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3037662300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037662300</sourcerecordid><originalsourceid>FETCH-proquest_journals_30376623003</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcUksSdRNKcosS81TyE0tychPKVZIyy9SKCxNzCvJLEksAcooZOYmpmfmpfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyxgbG5mZmRsYGBMXGqAKDeMdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037662300</pqid></control><display><type>article</type><title>Data-driven methods for quantitative imaging</title><source>Free E- Journals</source><creator>Dong, Guozhi ; Flaschel, Moritz ; Hintermüller, Michael ; Papafitsoros, Kostas ; Sirotenko, Clemens ; Tabelow, Karsten</creator><creatorcontrib>Dong, Guozhi ; Flaschel, Moritz ; Hintermüller, Michael ; Papafitsoros, Kostas ; Sirotenko, Clemens ; Tabelow, Karsten</creatorcontrib><description>In the field of quantitative imaging, the image information at a pixel or voxel in an underlying domain entails crucial information about the imaged matter. This is particularly important in medical imaging applications, such as quantitative Magnetic Resonance Imaging (qMRI), where quantitative maps of biophysical parameters can characterize the imaged tissue and thus lead to more accurate diagnoses. Such quantitative values can also be useful in subsequent, automatized classification tasks in order to discriminate normal from abnormal tissue, for instance. The accurate reconstruction of these quantitative maps is typically achieved by solving two coupled inverse problems which involve a (forward) measurement operator, typically ill-posed, and a physical process that links the wanted quantitative parameters to the reconstructed qualitative image, given some underlying measurement data. In this review, by considering qMRI as a prototypical application, we provide a mathematically-oriented overview on how data-driven approaches can be employed in these inverse problems eventually improving the reconstruction of the associated quantitative maps.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Image reconstruction ; Inverse problems ; Magnetic resonance imaging ; Mathematical analysis ; Medical imaging ; Parameters ; Qualitative analysis</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Dong, Guozhi</creatorcontrib><creatorcontrib>Flaschel, Moritz</creatorcontrib><creatorcontrib>Hintermüller, Michael</creatorcontrib><creatorcontrib>Papafitsoros, Kostas</creatorcontrib><creatorcontrib>Sirotenko, Clemens</creatorcontrib><creatorcontrib>Tabelow, Karsten</creatorcontrib><title>Data-driven methods for quantitative imaging</title><title>arXiv.org</title><description>In the field of quantitative imaging, the image information at a pixel or voxel in an underlying domain entails crucial information about the imaged matter. This is particularly important in medical imaging applications, such as quantitative Magnetic Resonance Imaging (qMRI), where quantitative maps of biophysical parameters can characterize the imaged tissue and thus lead to more accurate diagnoses. Such quantitative values can also be useful in subsequent, automatized classification tasks in order to discriminate normal from abnormal tissue, for instance. The accurate reconstruction of these quantitative maps is typically achieved by solving two coupled inverse problems which involve a (forward) measurement operator, typically ill-posed, and a physical process that links the wanted quantitative parameters to the reconstructed qualitative image, given some underlying measurement data. In this review, by considering qMRI as a prototypical application, we provide a mathematically-oriented overview on how data-driven approaches can be employed in these inverse problems eventually improving the reconstruction of the associated quantitative maps.</description><subject>Image reconstruction</subject><subject>Inverse problems</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Medical imaging</subject><subject>Parameters</subject><subject>Qualitative analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcUksSdRNKcosS81TyE0tychPKVZIyy9SKCxNzCvJLEksAcooZOYmpmfmpfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyxgbG5mZmRsYGBMXGqAKDeMdI</recordid><startdate>20240411</startdate><enddate>20240411</enddate><creator>Dong, Guozhi</creator><creator>Flaschel, Moritz</creator><creator>Hintermüller, Michael</creator><creator>Papafitsoros, Kostas</creator><creator>Sirotenko, Clemens</creator><creator>Tabelow, Karsten</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240411</creationdate><title>Data-driven methods for quantitative imaging</title><author>Dong, Guozhi ; Flaschel, Moritz ; Hintermüller, Michael ; Papafitsoros, Kostas ; Sirotenko, Clemens ; Tabelow, Karsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30376623003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Image reconstruction</topic><topic>Inverse problems</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Medical imaging</topic><topic>Parameters</topic><topic>Qualitative analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Dong, Guozhi</creatorcontrib><creatorcontrib>Flaschel, Moritz</creatorcontrib><creatorcontrib>Hintermüller, Michael</creatorcontrib><creatorcontrib>Papafitsoros, Kostas</creatorcontrib><creatorcontrib>Sirotenko, Clemens</creatorcontrib><creatorcontrib>Tabelow, Karsten</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Guozhi</au><au>Flaschel, Moritz</au><au>Hintermüller, Michael</au><au>Papafitsoros, Kostas</au><au>Sirotenko, Clemens</au><au>Tabelow, Karsten</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Data-driven methods for quantitative imaging</atitle><jtitle>arXiv.org</jtitle><date>2024-04-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In the field of quantitative imaging, the image information at a pixel or voxel in an underlying domain entails crucial information about the imaged matter. This is particularly important in medical imaging applications, such as quantitative Magnetic Resonance Imaging (qMRI), where quantitative maps of biophysical parameters can characterize the imaged tissue and thus lead to more accurate diagnoses. Such quantitative values can also be useful in subsequent, automatized classification tasks in order to discriminate normal from abnormal tissue, for instance. The accurate reconstruction of these quantitative maps is typically achieved by solving two coupled inverse problems which involve a (forward) measurement operator, typically ill-posed, and a physical process that links the wanted quantitative parameters to the reconstructed qualitative image, given some underlying measurement data. In this review, by considering qMRI as a prototypical application, we provide a mathematically-oriented overview on how data-driven approaches can be employed in these inverse problems eventually improving the reconstruction of the associated quantitative maps.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3037662300
source Free E- Journals
subjects Image reconstruction
Inverse problems
Magnetic resonance imaging
Mathematical analysis
Medical imaging
Parameters
Qualitative analysis
title Data-driven methods for quantitative imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Data-driven%20methods%20for%20quantitative%20imaging&rft.jtitle=arXiv.org&rft.au=Dong,%20Guozhi&rft.date=2024-04-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3037662300%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037662300&rft_id=info:pmid/&rfr_iscdi=true