GANsemble for Small and Imbalanced Data Sets: A Baseline for Synthetic Microplastics Data
Microplastic particle ingestion or inhalation by humans is a problem of growing concern. Unfortunately, current research methods that use machine learning to understand their potential harms are obstructed by a lack of available data. Deep learning techniques in particular are challenged by such dom...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Platnick, Daniel Khanzadeh, Sourena Sadeghian, Alireza Valenzano, Richard Anthony |
description | Microplastic particle ingestion or inhalation by humans is a problem of growing concern. Unfortunately, current research methods that use machine learning to understand their potential harms are obstructed by a lack of available data. Deep learning techniques in particular are challenged by such domains where only small or imbalanced data sets are available. Overcoming this challenge often involves oversampling underrepresented classes or augmenting the existing data to improve model performance. This paper proposes GANsemble: a two-module framework connecting data augmentation with conditional generative adversarial networks (cGANs) to generate class-conditioned synthetic data. First, the data chooser module automates augmentation strategy selection by searching for the best data augmentation strategy. Next, the cGAN module uses this strategy to train a cGAN for generating enhanced synthetic data. We experiment with the GANsemble framework on a small and imbalanced microplastics data set. A Microplastic-cGAN (MPcGAN) algorithm is introduced, and baselines for synthetic microplastics (SYMP) data are established in terms of Frechet Inception Distance (FID) and Inception Scores (IS). We also provide a synthetic microplastics filter (SYMP-Filter) algorithm to increase the quality of generated SYMP. Additionally, we show the best amount of oversampling with augmentation to fix class imbalance in small microplastics data sets. To our knowledge, this study is the first application of generative AI to synthetically create microplastics data. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3037661338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037661338</sourcerecordid><originalsourceid>FETCH-proquest_journals_30376613383</originalsourceid><addsrcrecordid>eNqNi80KgkAURocgSMp3uNBa0Jn8oZ39t6iNbVrJVUdSxtG846K3T8IHaPVxOOebMYsL4TnRhvMFs4lq13V5EHLfFxZ7nuM7ySZTEsq2h6RBpQB1AdcmQ4U6lwUc0CAk0tAWYtghSVXpKf9o85KmyuFW5X3bKaQR6PdYsXmJiqQ97ZKtT8fH_uJ0ffseJJm0bodejyoVrgiDwBMiEv9VXwisQN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037661338</pqid></control><display><type>article</type><title>GANsemble for Small and Imbalanced Data Sets: A Baseline for Synthetic Microplastics Data</title><source>Free E- Journals</source><creator>Platnick, Daniel ; Khanzadeh, Sourena ; Sadeghian, Alireza ; Valenzano, Richard Anthony</creator><creatorcontrib>Platnick, Daniel ; Khanzadeh, Sourena ; Sadeghian, Alireza ; Valenzano, Richard Anthony</creatorcontrib><description>Microplastic particle ingestion or inhalation by humans is a problem of growing concern. Unfortunately, current research methods that use machine learning to understand their potential harms are obstructed by a lack of available data. Deep learning techniques in particular are challenged by such domains where only small or imbalanced data sets are available. Overcoming this challenge often involves oversampling underrepresented classes or augmenting the existing data to improve model performance. This paper proposes GANsemble: a two-module framework connecting data augmentation with conditional generative adversarial networks (cGANs) to generate class-conditioned synthetic data. First, the data chooser module automates augmentation strategy selection by searching for the best data augmentation strategy. Next, the cGAN module uses this strategy to train a cGAN for generating enhanced synthetic data. We experiment with the GANsemble framework on a small and imbalanced microplastics data set. A Microplastic-cGAN (MPcGAN) algorithm is introduced, and baselines for synthetic microplastics (SYMP) data are established in terms of Frechet Inception Distance (FID) and Inception Scores (IS). We also provide a synthetic microplastics filter (SYMP-Filter) algorithm to increase the quality of generated SYMP. Additionally, we show the best amount of oversampling with augmentation to fix class imbalance in small microplastics data sets. To our knowledge, this study is the first application of generative AI to synthetically create microplastics data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Data augmentation ; Datasets ; Deep learning ; Generative adversarial networks ; Generative artificial intelligence ; Ingestion ; Machine learning ; Modules ; Oversampling ; Plastic pollution ; Respiration ; Synthetic data</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Platnick, Daniel</creatorcontrib><creatorcontrib>Khanzadeh, Sourena</creatorcontrib><creatorcontrib>Sadeghian, Alireza</creatorcontrib><creatorcontrib>Valenzano, Richard Anthony</creatorcontrib><title>GANsemble for Small and Imbalanced Data Sets: A Baseline for Synthetic Microplastics Data</title><title>arXiv.org</title><description>Microplastic particle ingestion or inhalation by humans is a problem of growing concern. Unfortunately, current research methods that use machine learning to understand their potential harms are obstructed by a lack of available data. Deep learning techniques in particular are challenged by such domains where only small or imbalanced data sets are available. Overcoming this challenge often involves oversampling underrepresented classes or augmenting the existing data to improve model performance. This paper proposes GANsemble: a two-module framework connecting data augmentation with conditional generative adversarial networks (cGANs) to generate class-conditioned synthetic data. First, the data chooser module automates augmentation strategy selection by searching for the best data augmentation strategy. Next, the cGAN module uses this strategy to train a cGAN for generating enhanced synthetic data. We experiment with the GANsemble framework on a small and imbalanced microplastics data set. A Microplastic-cGAN (MPcGAN) algorithm is introduced, and baselines for synthetic microplastics (SYMP) data are established in terms of Frechet Inception Distance (FID) and Inception Scores (IS). We also provide a synthetic microplastics filter (SYMP-Filter) algorithm to increase the quality of generated SYMP. Additionally, we show the best amount of oversampling with augmentation to fix class imbalance in small microplastics data sets. To our knowledge, this study is the first application of generative AI to synthetically create microplastics data.</description><subject>Algorithms</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Generative adversarial networks</subject><subject>Generative artificial intelligence</subject><subject>Ingestion</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Oversampling</subject><subject>Plastic pollution</subject><subject>Respiration</subject><subject>Synthetic data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi80KgkAURocgSMp3uNBa0Jn8oZ39t6iNbVrJVUdSxtG846K3T8IHaPVxOOebMYsL4TnRhvMFs4lq13V5EHLfFxZ7nuM7ySZTEsq2h6RBpQB1AdcmQ4U6lwUc0CAk0tAWYtghSVXpKf9o85KmyuFW5X3bKaQR6PdYsXmJiqQ97ZKtT8fH_uJ0ffseJJm0bodejyoVrgiDwBMiEv9VXwisQN8</recordid><startdate>20240430</startdate><enddate>20240430</enddate><creator>Platnick, Daniel</creator><creator>Khanzadeh, Sourena</creator><creator>Sadeghian, Alireza</creator><creator>Valenzano, Richard Anthony</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240430</creationdate><title>GANsemble for Small and Imbalanced Data Sets: A Baseline for Synthetic Microplastics Data</title><author>Platnick, Daniel ; Khanzadeh, Sourena ; Sadeghian, Alireza ; Valenzano, Richard Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30376613383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Generative adversarial networks</topic><topic>Generative artificial intelligence</topic><topic>Ingestion</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Oversampling</topic><topic>Plastic pollution</topic><topic>Respiration</topic><topic>Synthetic data</topic><toplevel>online_resources</toplevel><creatorcontrib>Platnick, Daniel</creatorcontrib><creatorcontrib>Khanzadeh, Sourena</creatorcontrib><creatorcontrib>Sadeghian, Alireza</creatorcontrib><creatorcontrib>Valenzano, Richard Anthony</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Platnick, Daniel</au><au>Khanzadeh, Sourena</au><au>Sadeghian, Alireza</au><au>Valenzano, Richard Anthony</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>GANsemble for Small and Imbalanced Data Sets: A Baseline for Synthetic Microplastics Data</atitle><jtitle>arXiv.org</jtitle><date>2024-04-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Microplastic particle ingestion or inhalation by humans is a problem of growing concern. Unfortunately, current research methods that use machine learning to understand their potential harms are obstructed by a lack of available data. Deep learning techniques in particular are challenged by such domains where only small or imbalanced data sets are available. Overcoming this challenge often involves oversampling underrepresented classes or augmenting the existing data to improve model performance. This paper proposes GANsemble: a two-module framework connecting data augmentation with conditional generative adversarial networks (cGANs) to generate class-conditioned synthetic data. First, the data chooser module automates augmentation strategy selection by searching for the best data augmentation strategy. Next, the cGAN module uses this strategy to train a cGAN for generating enhanced synthetic data. We experiment with the GANsemble framework on a small and imbalanced microplastics data set. A Microplastic-cGAN (MPcGAN) algorithm is introduced, and baselines for synthetic microplastics (SYMP) data are established in terms of Frechet Inception Distance (FID) and Inception Scores (IS). We also provide a synthetic microplastics filter (SYMP-Filter) algorithm to increase the quality of generated SYMP. Additionally, we show the best amount of oversampling with augmentation to fix class imbalance in small microplastics data sets. To our knowledge, this study is the first application of generative AI to synthetically create microplastics data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3037661338 |
source | Free E- Journals |
subjects | Algorithms Data augmentation Datasets Deep learning Generative adversarial networks Generative artificial intelligence Ingestion Machine learning Modules Oversampling Plastic pollution Respiration Synthetic data |
title | GANsemble for Small and Imbalanced Data Sets: A Baseline for Synthetic Microplastics Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=GANsemble%20for%20Small%20and%20Imbalanced%20Data%20Sets:%20A%20Baseline%20for%20Synthetic%20Microplastics%20Data&rft.jtitle=arXiv.org&rft.au=Platnick,%20Daniel&rft.date=2024-04-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3037661338%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037661338&rft_id=info:pmid/&rfr_iscdi=true |