GANsemble for Small and Imbalanced Data Sets: A Baseline for Synthetic Microplastics Data

Microplastic particle ingestion or inhalation by humans is a problem of growing concern. Unfortunately, current research methods that use machine learning to understand their potential harms are obstructed by a lack of available data. Deep learning techniques in particular are challenged by such dom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Platnick, Daniel, Khanzadeh, Sourena, Sadeghian, Alireza, Valenzano, Richard Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Platnick, Daniel
Khanzadeh, Sourena
Sadeghian, Alireza
Valenzano, Richard Anthony
description Microplastic particle ingestion or inhalation by humans is a problem of growing concern. Unfortunately, current research methods that use machine learning to understand their potential harms are obstructed by a lack of available data. Deep learning techniques in particular are challenged by such domains where only small or imbalanced data sets are available. Overcoming this challenge often involves oversampling underrepresented classes or augmenting the existing data to improve model performance. This paper proposes GANsemble: a two-module framework connecting data augmentation with conditional generative adversarial networks (cGANs) to generate class-conditioned synthetic data. First, the data chooser module automates augmentation strategy selection by searching for the best data augmentation strategy. Next, the cGAN module uses this strategy to train a cGAN for generating enhanced synthetic data. We experiment with the GANsemble framework on a small and imbalanced microplastics data set. A Microplastic-cGAN (MPcGAN) algorithm is introduced, and baselines for synthetic microplastics (SYMP) data are established in terms of Frechet Inception Distance (FID) and Inception Scores (IS). We also provide a synthetic microplastics filter (SYMP-Filter) algorithm to increase the quality of generated SYMP. Additionally, we show the best amount of oversampling with augmentation to fix class imbalance in small microplastics data sets. To our knowledge, this study is the first application of generative AI to synthetically create microplastics data.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3037661338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037661338</sourcerecordid><originalsourceid>FETCH-proquest_journals_30376613383</originalsourceid><addsrcrecordid>eNqNi80KgkAURocgSMp3uNBa0Jn8oZ39t6iNbVrJVUdSxtG846K3T8IHaPVxOOebMYsL4TnRhvMFs4lq13V5EHLfFxZ7nuM7ySZTEsq2h6RBpQB1AdcmQ4U6lwUc0CAk0tAWYtghSVXpKf9o85KmyuFW5X3bKaQR6PdYsXmJiqQ97ZKtT8fH_uJ0ffseJJm0bodejyoVrgiDwBMiEv9VXwisQN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037661338</pqid></control><display><type>article</type><title>GANsemble for Small and Imbalanced Data Sets: A Baseline for Synthetic Microplastics Data</title><source>Free E- Journals</source><creator>Platnick, Daniel ; Khanzadeh, Sourena ; Sadeghian, Alireza ; Valenzano, Richard Anthony</creator><creatorcontrib>Platnick, Daniel ; Khanzadeh, Sourena ; Sadeghian, Alireza ; Valenzano, Richard Anthony</creatorcontrib><description>Microplastic particle ingestion or inhalation by humans is a problem of growing concern. Unfortunately, current research methods that use machine learning to understand their potential harms are obstructed by a lack of available data. Deep learning techniques in particular are challenged by such domains where only small or imbalanced data sets are available. Overcoming this challenge often involves oversampling underrepresented classes or augmenting the existing data to improve model performance. This paper proposes GANsemble: a two-module framework connecting data augmentation with conditional generative adversarial networks (cGANs) to generate class-conditioned synthetic data. First, the data chooser module automates augmentation strategy selection by searching for the best data augmentation strategy. Next, the cGAN module uses this strategy to train a cGAN for generating enhanced synthetic data. We experiment with the GANsemble framework on a small and imbalanced microplastics data set. A Microplastic-cGAN (MPcGAN) algorithm is introduced, and baselines for synthetic microplastics (SYMP) data are established in terms of Frechet Inception Distance (FID) and Inception Scores (IS). We also provide a synthetic microplastics filter (SYMP-Filter) algorithm to increase the quality of generated SYMP. Additionally, we show the best amount of oversampling with augmentation to fix class imbalance in small microplastics data sets. To our knowledge, this study is the first application of generative AI to synthetically create microplastics data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Data augmentation ; Datasets ; Deep learning ; Generative adversarial networks ; Generative artificial intelligence ; Ingestion ; Machine learning ; Modules ; Oversampling ; Plastic pollution ; Respiration ; Synthetic data</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Platnick, Daniel</creatorcontrib><creatorcontrib>Khanzadeh, Sourena</creatorcontrib><creatorcontrib>Sadeghian, Alireza</creatorcontrib><creatorcontrib>Valenzano, Richard Anthony</creatorcontrib><title>GANsemble for Small and Imbalanced Data Sets: A Baseline for Synthetic Microplastics Data</title><title>arXiv.org</title><description>Microplastic particle ingestion or inhalation by humans is a problem of growing concern. Unfortunately, current research methods that use machine learning to understand their potential harms are obstructed by a lack of available data. Deep learning techniques in particular are challenged by such domains where only small or imbalanced data sets are available. Overcoming this challenge often involves oversampling underrepresented classes or augmenting the existing data to improve model performance. This paper proposes GANsemble: a two-module framework connecting data augmentation with conditional generative adversarial networks (cGANs) to generate class-conditioned synthetic data. First, the data chooser module automates augmentation strategy selection by searching for the best data augmentation strategy. Next, the cGAN module uses this strategy to train a cGAN for generating enhanced synthetic data. We experiment with the GANsemble framework on a small and imbalanced microplastics data set. A Microplastic-cGAN (MPcGAN) algorithm is introduced, and baselines for synthetic microplastics (SYMP) data are established in terms of Frechet Inception Distance (FID) and Inception Scores (IS). We also provide a synthetic microplastics filter (SYMP-Filter) algorithm to increase the quality of generated SYMP. Additionally, we show the best amount of oversampling with augmentation to fix class imbalance in small microplastics data sets. To our knowledge, this study is the first application of generative AI to synthetically create microplastics data.</description><subject>Algorithms</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Generative adversarial networks</subject><subject>Generative artificial intelligence</subject><subject>Ingestion</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Oversampling</subject><subject>Plastic pollution</subject><subject>Respiration</subject><subject>Synthetic data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi80KgkAURocgSMp3uNBa0Jn8oZ39t6iNbVrJVUdSxtG846K3T8IHaPVxOOebMYsL4TnRhvMFs4lq13V5EHLfFxZ7nuM7ySZTEsq2h6RBpQB1AdcmQ4U6lwUc0CAk0tAWYtghSVXpKf9o85KmyuFW5X3bKaQR6PdYsXmJiqQ97ZKtT8fH_uJ0ffseJJm0bodejyoVrgiDwBMiEv9VXwisQN8</recordid><startdate>20240430</startdate><enddate>20240430</enddate><creator>Platnick, Daniel</creator><creator>Khanzadeh, Sourena</creator><creator>Sadeghian, Alireza</creator><creator>Valenzano, Richard Anthony</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240430</creationdate><title>GANsemble for Small and Imbalanced Data Sets: A Baseline for Synthetic Microplastics Data</title><author>Platnick, Daniel ; Khanzadeh, Sourena ; Sadeghian, Alireza ; Valenzano, Richard Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30376613383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Generative adversarial networks</topic><topic>Generative artificial intelligence</topic><topic>Ingestion</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Oversampling</topic><topic>Plastic pollution</topic><topic>Respiration</topic><topic>Synthetic data</topic><toplevel>online_resources</toplevel><creatorcontrib>Platnick, Daniel</creatorcontrib><creatorcontrib>Khanzadeh, Sourena</creatorcontrib><creatorcontrib>Sadeghian, Alireza</creatorcontrib><creatorcontrib>Valenzano, Richard Anthony</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Platnick, Daniel</au><au>Khanzadeh, Sourena</au><au>Sadeghian, Alireza</au><au>Valenzano, Richard Anthony</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>GANsemble for Small and Imbalanced Data Sets: A Baseline for Synthetic Microplastics Data</atitle><jtitle>arXiv.org</jtitle><date>2024-04-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Microplastic particle ingestion or inhalation by humans is a problem of growing concern. Unfortunately, current research methods that use machine learning to understand their potential harms are obstructed by a lack of available data. Deep learning techniques in particular are challenged by such domains where only small or imbalanced data sets are available. Overcoming this challenge often involves oversampling underrepresented classes or augmenting the existing data to improve model performance. This paper proposes GANsemble: a two-module framework connecting data augmentation with conditional generative adversarial networks (cGANs) to generate class-conditioned synthetic data. First, the data chooser module automates augmentation strategy selection by searching for the best data augmentation strategy. Next, the cGAN module uses this strategy to train a cGAN for generating enhanced synthetic data. We experiment with the GANsemble framework on a small and imbalanced microplastics data set. A Microplastic-cGAN (MPcGAN) algorithm is introduced, and baselines for synthetic microplastics (SYMP) data are established in terms of Frechet Inception Distance (FID) and Inception Scores (IS). We also provide a synthetic microplastics filter (SYMP-Filter) algorithm to increase the quality of generated SYMP. Additionally, we show the best amount of oversampling with augmentation to fix class imbalance in small microplastics data sets. To our knowledge, this study is the first application of generative AI to synthetically create microplastics data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3037661338
source Free E- Journals
subjects Algorithms
Data augmentation
Datasets
Deep learning
Generative adversarial networks
Generative artificial intelligence
Ingestion
Machine learning
Modules
Oversampling
Plastic pollution
Respiration
Synthetic data
title GANsemble for Small and Imbalanced Data Sets: A Baseline for Synthetic Microplastics Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=GANsemble%20for%20Small%20and%20Imbalanced%20Data%20Sets:%20A%20Baseline%20for%20Synthetic%20Microplastics%20Data&rft.jtitle=arXiv.org&rft.au=Platnick,%20Daniel&rft.date=2024-04-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3037661338%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037661338&rft_id=info:pmid/&rfr_iscdi=true