Intelligent Suppression of Interferences Based on Reinforcement Learning

This article aims to investigate intelligent strategies of interference suppression for radar systems in the background of complex electromagnetic interferences. At the modeling stage, an interactive loop is established exploiting the interaction between the radar and the environment for interferenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2024-04, Vol.60 (2), p.1400-1415
Hauptverfasser: Zhang, Xiang, Lan, Lan, Zhu, Shengqi, Li, Ximin, Liao, Guisheng, Xu, Jingwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1415
container_issue 2
container_start_page 1400
container_title IEEE transactions on aerospace and electronic systems
container_volume 60
creator Zhang, Xiang
Lan, Lan
Zhu, Shengqi
Li, Ximin
Liao, Guisheng
Xu, Jingwei
description This article aims to investigate intelligent strategies of interference suppression for radar systems in the background of complex electromagnetic interferences. At the modeling stage, an interactive loop is established exploiting the interaction between the radar and the environment for interference suppression based on reinforcement learning. Specifically, the mappings from the interference suppression to the reinforcement learning, including the interference state set, the method set, evaluation criteria of interference suppression in different domains, and the principle of interference substate transformation, have been established. In this respect, two algorithms, including the Retroactive-Q (R-Q) learning and Retroactive-Deep Q Network (R-DQN), are developed by introducing a backtracking Q-value, which links the evaluations in each time step of a training round. At the analysis stage, the selection probabilities of the optimal implementation sequence for interference suppression are studied, and comparisons among the devised R-Q learning, R-DQN, conventional Q learning, and DQN are carried out in terms of output Q-values. Numerical results corroborate the effectiveness and robustness of the considered suppression strategies in diverse scenarios.
doi_str_mv 10.1109/TAES.2023.3336643
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3037645383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10330718</ieee_id><sourcerecordid>3037645383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-19a097b00b44c050215464c0e4340ef321bca46a8d9f26ae31713b02f2f163963</originalsourceid><addsrcrecordid>eNpNkEFLw0AQhRdRsFZ_gOAh4Dl1ZmezSY61VC0UBFvPyyadLSntpu6mB_-9Ce3B08zw3psHnxCPCBNEKF_W0_lqIkHShIi0VnQlRphleVpqoGsxAsAiLWWGt-Iuxl1_qkLRSHwsfMf7fbNl3yWr0_EYOMam9UnrkkEKjgP7mmPyaiNvkl754sa7NtR8GDJLtsE3fnsvbpzdR364zLH4fpuvZx_p8vN9MZsu01oq3aVYWijzCqBSqoYMJGZK9xsrUsCOJFa1VdoWm9JJbZkwR6pAOulQU6lpLJ7Pf4-h_Tlx7MyuPQXfVxoCyrXKqKDehWdXHdoYAztzDM3Bhl-DYAZgZgBmBmDmAqzPPJ0zDTP_8xNBjgX9AXT0ZfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037645383</pqid></control><display><type>article</type><title>Intelligent Suppression of Interferences Based on Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xiang ; Lan, Lan ; Zhu, Shengqi ; Li, Ximin ; Liao, Guisheng ; Xu, Jingwei</creator><creatorcontrib>Zhang, Xiang ; Lan, Lan ; Zhu, Shengqi ; Li, Ximin ; Liao, Guisheng ; Xu, Jingwei</creatorcontrib><description>This article aims to investigate intelligent strategies of interference suppression for radar systems in the background of complex electromagnetic interferences. At the modeling stage, an interactive loop is established exploiting the interaction between the radar and the environment for interference suppression based on reinforcement learning. Specifically, the mappings from the interference suppression to the reinforcement learning, including the interference state set, the method set, evaluation criteria of interference suppression in different domains, and the principle of interference substate transformation, have been established. In this respect, two algorithms, including the Retroactive-Q (R-Q) learning and Retroactive-Deep Q Network (R-DQN), are developed by introducing a backtracking Q-value, which links the evaluations in each time step of a training round. At the analysis stage, the selection probabilities of the optimal implementation sequence for interference suppression are studied, and comparisons among the devised R-Q learning, R-DQN, conventional Q learning, and DQN are carried out in terms of output Q-values. Numerical results corroborate the effectiveness and robustness of the considered suppression strategies in diverse scenarios.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2023.3336643</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Frequency modulation ; Intelligent interference suppression ; Interference ; Interference suppression ; Radar ; Radar equipment ; Radar tracking ; reinforcement learning ; retroactive-DQN ; retroactive-q learning ; Robustness (mathematics) ; Signal processing algorithms ; Time-frequency analysis ; Training</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-04, Vol.60 (2), p.1400-1415</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-19a097b00b44c050215464c0e4340ef321bca46a8d9f26ae31713b02f2f163963</cites><orcidid>0000-0002-1865-6214 ; 0000-0002-9398-1308 ; 0000-0002-5919-0713 ; 0009-0006-3697-7114 ; 0009-0006-5310-6636 ; 0000-0002-3119-4472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10330718$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10330718$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Lan, Lan</creatorcontrib><creatorcontrib>Zhu, Shengqi</creatorcontrib><creatorcontrib>Li, Ximin</creatorcontrib><creatorcontrib>Liao, Guisheng</creatorcontrib><creatorcontrib>Xu, Jingwei</creatorcontrib><title>Intelligent Suppression of Interferences Based on Reinforcement Learning</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>This article aims to investigate intelligent strategies of interference suppression for radar systems in the background of complex electromagnetic interferences. At the modeling stage, an interactive loop is established exploiting the interaction between the radar and the environment for interference suppression based on reinforcement learning. Specifically, the mappings from the interference suppression to the reinforcement learning, including the interference state set, the method set, evaluation criteria of interference suppression in different domains, and the principle of interference substate transformation, have been established. In this respect, two algorithms, including the Retroactive-Q (R-Q) learning and Retroactive-Deep Q Network (R-DQN), are developed by introducing a backtracking Q-value, which links the evaluations in each time step of a training round. At the analysis stage, the selection probabilities of the optimal implementation sequence for interference suppression are studied, and comparisons among the devised R-Q learning, R-DQN, conventional Q learning, and DQN are carried out in terms of output Q-values. Numerical results corroborate the effectiveness and robustness of the considered suppression strategies in diverse scenarios.</description><subject>Algorithms</subject><subject>Frequency modulation</subject><subject>Intelligent interference suppression</subject><subject>Interference</subject><subject>Interference suppression</subject><subject>Radar</subject><subject>Radar equipment</subject><subject>Radar tracking</subject><subject>reinforcement learning</subject><subject>retroactive-DQN</subject><subject>retroactive-q learning</subject><subject>Robustness (mathematics)</subject><subject>Signal processing algorithms</subject><subject>Time-frequency analysis</subject><subject>Training</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLw0AQhRdRsFZ_gOAh4Dl1ZmezSY61VC0UBFvPyyadLSntpu6mB_-9Ce3B08zw3psHnxCPCBNEKF_W0_lqIkHShIi0VnQlRphleVpqoGsxAsAiLWWGt-Iuxl1_qkLRSHwsfMf7fbNl3yWr0_EYOMam9UnrkkEKjgP7mmPyaiNvkl754sa7NtR8GDJLtsE3fnsvbpzdR364zLH4fpuvZx_p8vN9MZsu01oq3aVYWijzCqBSqoYMJGZK9xsrUsCOJFa1VdoWm9JJbZkwR6pAOulQU6lpLJ7Pf4-h_Tlx7MyuPQXfVxoCyrXKqKDehWdXHdoYAztzDM3Bhl-DYAZgZgBmBmDmAqzPPJ0zDTP_8xNBjgX9AXT0ZfE</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Zhang, Xiang</creator><creator>Lan, Lan</creator><creator>Zhu, Shengqi</creator><creator>Li, Ximin</creator><creator>Liao, Guisheng</creator><creator>Xu, Jingwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1865-6214</orcidid><orcidid>https://orcid.org/0000-0002-9398-1308</orcidid><orcidid>https://orcid.org/0000-0002-5919-0713</orcidid><orcidid>https://orcid.org/0009-0006-3697-7114</orcidid><orcidid>https://orcid.org/0009-0006-5310-6636</orcidid><orcidid>https://orcid.org/0000-0002-3119-4472</orcidid></search><sort><creationdate>20240401</creationdate><title>Intelligent Suppression of Interferences Based on Reinforcement Learning</title><author>Zhang, Xiang ; Lan, Lan ; Zhu, Shengqi ; Li, Ximin ; Liao, Guisheng ; Xu, Jingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-19a097b00b44c050215464c0e4340ef321bca46a8d9f26ae31713b02f2f163963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Frequency modulation</topic><topic>Intelligent interference suppression</topic><topic>Interference</topic><topic>Interference suppression</topic><topic>Radar</topic><topic>Radar equipment</topic><topic>Radar tracking</topic><topic>reinforcement learning</topic><topic>retroactive-DQN</topic><topic>retroactive-q learning</topic><topic>Robustness (mathematics)</topic><topic>Signal processing algorithms</topic><topic>Time-frequency analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Lan, Lan</creatorcontrib><creatorcontrib>Zhu, Shengqi</creatorcontrib><creatorcontrib>Li, Ximin</creatorcontrib><creatorcontrib>Liao, Guisheng</creatorcontrib><creatorcontrib>Xu, Jingwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xiang</au><au>Lan, Lan</au><au>Zhu, Shengqi</au><au>Li, Ximin</au><au>Liao, Guisheng</au><au>Xu, Jingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Suppression of Interferences Based on Reinforcement Learning</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>60</volume><issue>2</issue><spage>1400</spage><epage>1415</epage><pages>1400-1415</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>This article aims to investigate intelligent strategies of interference suppression for radar systems in the background of complex electromagnetic interferences. At the modeling stage, an interactive loop is established exploiting the interaction between the radar and the environment for interference suppression based on reinforcement learning. Specifically, the mappings from the interference suppression to the reinforcement learning, including the interference state set, the method set, evaluation criteria of interference suppression in different domains, and the principle of interference substate transformation, have been established. In this respect, two algorithms, including the Retroactive-Q (R-Q) learning and Retroactive-Deep Q Network (R-DQN), are developed by introducing a backtracking Q-value, which links the evaluations in each time step of a training round. At the analysis stage, the selection probabilities of the optimal implementation sequence for interference suppression are studied, and comparisons among the devised R-Q learning, R-DQN, conventional Q learning, and DQN are carried out in terms of output Q-values. Numerical results corroborate the effectiveness and robustness of the considered suppression strategies in diverse scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2023.3336643</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1865-6214</orcidid><orcidid>https://orcid.org/0000-0002-9398-1308</orcidid><orcidid>https://orcid.org/0000-0002-5919-0713</orcidid><orcidid>https://orcid.org/0009-0006-3697-7114</orcidid><orcidid>https://orcid.org/0009-0006-5310-6636</orcidid><orcidid>https://orcid.org/0000-0002-3119-4472</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2024-04, Vol.60 (2), p.1400-1415
issn 0018-9251
1557-9603
language eng
recordid cdi_proquest_journals_3037645383
source IEEE Electronic Library (IEL)
subjects Algorithms
Frequency modulation
Intelligent interference suppression
Interference
Interference suppression
Radar
Radar equipment
Radar tracking
reinforcement learning
retroactive-DQN
retroactive-q learning
Robustness (mathematics)
Signal processing algorithms
Time-frequency analysis
Training
title Intelligent Suppression of Interferences Based on Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A57%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Suppression%20of%20Interferences%20Based%20on%20Reinforcement%20Learning&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Zhang,%20Xiang&rft.date=2024-04-01&rft.volume=60&rft.issue=2&rft.spage=1400&rft.epage=1415&rft.pages=1400-1415&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2023.3336643&rft_dat=%3Cproquest_RIE%3E3037645383%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037645383&rft_id=info:pmid/&rft_ieee_id=10330718&rfr_iscdi=true