Intelligent Suppression of Interferences Based on Reinforcement Learning
This article aims to investigate intelligent strategies of interference suppression for radar systems in the background of complex electromagnetic interferences. At the modeling stage, an interactive loop is established exploiting the interaction between the radar and the environment for interferenc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2024-04, Vol.60 (2), p.1400-1415 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1415 |
---|---|
container_issue | 2 |
container_start_page | 1400 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 60 |
creator | Zhang, Xiang Lan, Lan Zhu, Shengqi Li, Ximin Liao, Guisheng Xu, Jingwei |
description | This article aims to investigate intelligent strategies of interference suppression for radar systems in the background of complex electromagnetic interferences. At the modeling stage, an interactive loop is established exploiting the interaction between the radar and the environment for interference suppression based on reinforcement learning. Specifically, the mappings from the interference suppression to the reinforcement learning, including the interference state set, the method set, evaluation criteria of interference suppression in different domains, and the principle of interference substate transformation, have been established. In this respect, two algorithms, including the Retroactive-Q (R-Q) learning and Retroactive-Deep Q Network (R-DQN), are developed by introducing a backtracking Q-value, which links the evaluations in each time step of a training round. At the analysis stage, the selection probabilities of the optimal implementation sequence for interference suppression are studied, and comparisons among the devised R-Q learning, R-DQN, conventional Q learning, and DQN are carried out in terms of output Q-values. Numerical results corroborate the effectiveness and robustness of the considered suppression strategies in diverse scenarios. |
doi_str_mv | 10.1109/TAES.2023.3336643 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3037645383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10330718</ieee_id><sourcerecordid>3037645383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-19a097b00b44c050215464c0e4340ef321bca46a8d9f26ae31713b02f2f163963</originalsourceid><addsrcrecordid>eNpNkEFLw0AQhRdRsFZ_gOAh4Dl1ZmezSY61VC0UBFvPyyadLSntpu6mB_-9Ce3B08zw3psHnxCPCBNEKF_W0_lqIkHShIi0VnQlRphleVpqoGsxAsAiLWWGt-Iuxl1_qkLRSHwsfMf7fbNl3yWr0_EYOMam9UnrkkEKjgP7mmPyaiNvkl754sa7NtR8GDJLtsE3fnsvbpzdR364zLH4fpuvZx_p8vN9MZsu01oq3aVYWijzCqBSqoYMJGZK9xsrUsCOJFa1VdoWm9JJbZkwR6pAOulQU6lpLJ7Pf4-h_Tlx7MyuPQXfVxoCyrXKqKDehWdXHdoYAztzDM3Bhl-DYAZgZgBmBmDmAqzPPJ0zDTP_8xNBjgX9AXT0ZfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037645383</pqid></control><display><type>article</type><title>Intelligent Suppression of Interferences Based on Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xiang ; Lan, Lan ; Zhu, Shengqi ; Li, Ximin ; Liao, Guisheng ; Xu, Jingwei</creator><creatorcontrib>Zhang, Xiang ; Lan, Lan ; Zhu, Shengqi ; Li, Ximin ; Liao, Guisheng ; Xu, Jingwei</creatorcontrib><description>This article aims to investigate intelligent strategies of interference suppression for radar systems in the background of complex electromagnetic interferences. At the modeling stage, an interactive loop is established exploiting the interaction between the radar and the environment for interference suppression based on reinforcement learning. Specifically, the mappings from the interference suppression to the reinforcement learning, including the interference state set, the method set, evaluation criteria of interference suppression in different domains, and the principle of interference substate transformation, have been established. In this respect, two algorithms, including the Retroactive-Q (R-Q) learning and Retroactive-Deep Q Network (R-DQN), are developed by introducing a backtracking Q-value, which links the evaluations in each time step of a training round. At the analysis stage, the selection probabilities of the optimal implementation sequence for interference suppression are studied, and comparisons among the devised R-Q learning, R-DQN, conventional Q learning, and DQN are carried out in terms of output Q-values. Numerical results corroborate the effectiveness and robustness of the considered suppression strategies in diverse scenarios.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2023.3336643</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Frequency modulation ; Intelligent interference suppression ; Interference ; Interference suppression ; Radar ; Radar equipment ; Radar tracking ; reinforcement learning ; retroactive-DQN ; retroactive-q learning ; Robustness (mathematics) ; Signal processing algorithms ; Time-frequency analysis ; Training</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-04, Vol.60 (2), p.1400-1415</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-19a097b00b44c050215464c0e4340ef321bca46a8d9f26ae31713b02f2f163963</cites><orcidid>0000-0002-1865-6214 ; 0000-0002-9398-1308 ; 0000-0002-5919-0713 ; 0009-0006-3697-7114 ; 0009-0006-5310-6636 ; 0000-0002-3119-4472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10330718$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10330718$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Lan, Lan</creatorcontrib><creatorcontrib>Zhu, Shengqi</creatorcontrib><creatorcontrib>Li, Ximin</creatorcontrib><creatorcontrib>Liao, Guisheng</creatorcontrib><creatorcontrib>Xu, Jingwei</creatorcontrib><title>Intelligent Suppression of Interferences Based on Reinforcement Learning</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>This article aims to investigate intelligent strategies of interference suppression for radar systems in the background of complex electromagnetic interferences. At the modeling stage, an interactive loop is established exploiting the interaction between the radar and the environment for interference suppression based on reinforcement learning. Specifically, the mappings from the interference suppression to the reinforcement learning, including the interference state set, the method set, evaluation criteria of interference suppression in different domains, and the principle of interference substate transformation, have been established. In this respect, two algorithms, including the Retroactive-Q (R-Q) learning and Retroactive-Deep Q Network (R-DQN), are developed by introducing a backtracking Q-value, which links the evaluations in each time step of a training round. At the analysis stage, the selection probabilities of the optimal implementation sequence for interference suppression are studied, and comparisons among the devised R-Q learning, R-DQN, conventional Q learning, and DQN are carried out in terms of output Q-values. Numerical results corroborate the effectiveness and robustness of the considered suppression strategies in diverse scenarios.</description><subject>Algorithms</subject><subject>Frequency modulation</subject><subject>Intelligent interference suppression</subject><subject>Interference</subject><subject>Interference suppression</subject><subject>Radar</subject><subject>Radar equipment</subject><subject>Radar tracking</subject><subject>reinforcement learning</subject><subject>retroactive-DQN</subject><subject>retroactive-q learning</subject><subject>Robustness (mathematics)</subject><subject>Signal processing algorithms</subject><subject>Time-frequency analysis</subject><subject>Training</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLw0AQhRdRsFZ_gOAh4Dl1ZmezSY61VC0UBFvPyyadLSntpu6mB_-9Ce3B08zw3psHnxCPCBNEKF_W0_lqIkHShIi0VnQlRphleVpqoGsxAsAiLWWGt-Iuxl1_qkLRSHwsfMf7fbNl3yWr0_EYOMam9UnrkkEKjgP7mmPyaiNvkl754sa7NtR8GDJLtsE3fnsvbpzdR364zLH4fpuvZx_p8vN9MZsu01oq3aVYWijzCqBSqoYMJGZK9xsrUsCOJFa1VdoWm9JJbZkwR6pAOulQU6lpLJ7Pf4-h_Tlx7MyuPQXfVxoCyrXKqKDehWdXHdoYAztzDM3Bhl-DYAZgZgBmBmDmAqzPPJ0zDTP_8xNBjgX9AXT0ZfE</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Zhang, Xiang</creator><creator>Lan, Lan</creator><creator>Zhu, Shengqi</creator><creator>Li, Ximin</creator><creator>Liao, Guisheng</creator><creator>Xu, Jingwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1865-6214</orcidid><orcidid>https://orcid.org/0000-0002-9398-1308</orcidid><orcidid>https://orcid.org/0000-0002-5919-0713</orcidid><orcidid>https://orcid.org/0009-0006-3697-7114</orcidid><orcidid>https://orcid.org/0009-0006-5310-6636</orcidid><orcidid>https://orcid.org/0000-0002-3119-4472</orcidid></search><sort><creationdate>20240401</creationdate><title>Intelligent Suppression of Interferences Based on Reinforcement Learning</title><author>Zhang, Xiang ; Lan, Lan ; Zhu, Shengqi ; Li, Ximin ; Liao, Guisheng ; Xu, Jingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-19a097b00b44c050215464c0e4340ef321bca46a8d9f26ae31713b02f2f163963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Frequency modulation</topic><topic>Intelligent interference suppression</topic><topic>Interference</topic><topic>Interference suppression</topic><topic>Radar</topic><topic>Radar equipment</topic><topic>Radar tracking</topic><topic>reinforcement learning</topic><topic>retroactive-DQN</topic><topic>retroactive-q learning</topic><topic>Robustness (mathematics)</topic><topic>Signal processing algorithms</topic><topic>Time-frequency analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Lan, Lan</creatorcontrib><creatorcontrib>Zhu, Shengqi</creatorcontrib><creatorcontrib>Li, Ximin</creatorcontrib><creatorcontrib>Liao, Guisheng</creatorcontrib><creatorcontrib>Xu, Jingwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xiang</au><au>Lan, Lan</au><au>Zhu, Shengqi</au><au>Li, Ximin</au><au>Liao, Guisheng</au><au>Xu, Jingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Suppression of Interferences Based on Reinforcement Learning</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>60</volume><issue>2</issue><spage>1400</spage><epage>1415</epage><pages>1400-1415</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>This article aims to investigate intelligent strategies of interference suppression for radar systems in the background of complex electromagnetic interferences. At the modeling stage, an interactive loop is established exploiting the interaction between the radar and the environment for interference suppression based on reinforcement learning. Specifically, the mappings from the interference suppression to the reinforcement learning, including the interference state set, the method set, evaluation criteria of interference suppression in different domains, and the principle of interference substate transformation, have been established. In this respect, two algorithms, including the Retroactive-Q (R-Q) learning and Retroactive-Deep Q Network (R-DQN), are developed by introducing a backtracking Q-value, which links the evaluations in each time step of a training round. At the analysis stage, the selection probabilities of the optimal implementation sequence for interference suppression are studied, and comparisons among the devised R-Q learning, R-DQN, conventional Q learning, and DQN are carried out in terms of output Q-values. Numerical results corroborate the effectiveness and robustness of the considered suppression strategies in diverse scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2023.3336643</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1865-6214</orcidid><orcidid>https://orcid.org/0000-0002-9398-1308</orcidid><orcidid>https://orcid.org/0000-0002-5919-0713</orcidid><orcidid>https://orcid.org/0009-0006-3697-7114</orcidid><orcidid>https://orcid.org/0009-0006-5310-6636</orcidid><orcidid>https://orcid.org/0000-0002-3119-4472</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2024-04, Vol.60 (2), p.1400-1415 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_proquest_journals_3037645383 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Frequency modulation Intelligent interference suppression Interference Interference suppression Radar Radar equipment Radar tracking reinforcement learning retroactive-DQN retroactive-q learning Robustness (mathematics) Signal processing algorithms Time-frequency analysis Training |
title | Intelligent Suppression of Interferences Based on Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A57%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Suppression%20of%20Interferences%20Based%20on%20Reinforcement%20Learning&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Zhang,%20Xiang&rft.date=2024-04-01&rft.volume=60&rft.issue=2&rft.spage=1400&rft.epage=1415&rft.pages=1400-1415&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2023.3336643&rft_dat=%3Cproquest_RIE%3E3037645383%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037645383&rft_id=info:pmid/&rft_ieee_id=10330718&rfr_iscdi=true |