Automatic Condition Monitoring and Fault Diagnosis System for Power Transformers Based on Voiceprint Recognition
Power transformer emits continuous vibration signals during working, which contain plenty of impulses and fluctuations caused by mechanical faults, and these signals are the main data source to evaluate the operational condition of a power transformer. This study researches the voiceprint features o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 73 |
creator | Yu, Zhuoran Wei, Yangjie Niu, Ben Zhang, Xiaoli |
description | Power transformer emits continuous vibration signals during working, which contain plenty of impulses and fluctuations caused by mechanical faults, and these signals are the main data source to evaluate the operational condition of a power transformer. This study researches the voiceprint features of vibration sound signals within power transformers under different operational conditions and constructs an automatic and noninvasive condition monitoring and fault diagnosis system based on acoustic characteristics. First, a normal/faulty operational condition classification module is proposed using acoustic short-time energy and zero-crossing rate to evaluate the real-time operational condition of a power transformer. Second, a multifault recognition module with finite signal samples is constructed based on the time-frequency characteristics of acoustic signals, and an automatic fault diagnosis system for power transformers is built. To improve the accuracy and robustness under dynamic noisy environments and complicated operational conditions, a multidimensional performance optimization method is proposed to handle the problems caused by environmental noises, mixed faults, and unknown faults. Experimental results demonstrate that the proposed condition monitoring and fault diagnosis system can fast distinguish the faulty operational conditions and diagnose six types of typical faults of power transformers, as well as mixed faults, under different noisy environments with an accuracy of more than 97.83%. |
doi_str_mv | 10.1109/TIM.2024.3384551 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3037644768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10492658</ieee_id><sourcerecordid>3037644768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-d3de1cd318f771f8b4adbb08474c996b8b759e56f30dd2d642c112e64f49b4d53</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYjePXho4nmx39s9IoqSQDSKXjfdbZeUQIttN4Z_bxEPniaTvPPMzAPANUYjjFF1t5wtRgQRNqJUMs7xCRhgzsuiEoKcggFCWBYV4-IcXMS4RgiVgpUDsBv3yW9Vsi2ceKdtst7BhXc2-WDdCiqn4VT1mwQfrFo5H22E7_uYzBZ2PsBX_20CXAblYm63JkR4r6LRMFM-vW3NLlMSfDOtX7lf-CU469Qmmqu_OgQf08fl5LmYvzzNJuN50RLGU6GpNrjVFMuuLHEnG6Z00yDJStZWlWhkU_LKcNFRpDXRgpEWY2IE61jVMM3pENweubvgv3oTU732fXB5ZU0Rzc-zUsicQsdUG3yMwXR1Pnirwr7GqD54rbPX-uC1_vOaR26OI9YY8y_OKiK4pD_zuXXH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037644768</pqid></control><display><type>article</type><title>Automatic Condition Monitoring and Fault Diagnosis System for Power Transformers Based on Voiceprint Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Zhuoran ; Wei, Yangjie ; Niu, Ben ; Zhang, Xiaoli</creator><creatorcontrib>Yu, Zhuoran ; Wei, Yangjie ; Niu, Ben ; Zhang, Xiaoli</creatorcontrib><description>Power transformer emits continuous vibration signals during working, which contain plenty of impulses and fluctuations caused by mechanical faults, and these signals are the main data source to evaluate the operational condition of a power transformer. This study researches the voiceprint features of vibration sound signals within power transformers under different operational conditions and constructs an automatic and noninvasive condition monitoring and fault diagnosis system based on acoustic characteristics. First, a normal/faulty operational condition classification module is proposed using acoustic short-time energy and zero-crossing rate to evaluate the real-time operational condition of a power transformer. Second, a multifault recognition module with finite signal samples is constructed based on the time-frequency characteristics of acoustic signals, and an automatic fault diagnosis system for power transformers is built. To improve the accuracy and robustness under dynamic noisy environments and complicated operational conditions, a multidimensional performance optimization method is proposed to handle the problems caused by environmental noises, mixed faults, and unknown faults. Experimental results demonstrate that the proposed condition monitoring and fault diagnosis system can fast distinguish the faulty operational conditions and diagnose six types of typical faults of power transformers, as well as mixed faults, under different noisy environments with an accuracy of more than 97.83%.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3384551</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustics ; Condition monitoring ; Fault diagnosis ; fault diagnosis system ; Faults ; Feature extraction ; hidden Markov model (HMM) ; Hidden Markov models ; mel frequency cepstral coefficients (MFCCs) ; Modules ; Monitoring ; Oil insulation ; Real time operation ; Recognition ; Spectrogram ; Transformers ; Vibration ; voiceprint recognition</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-d3de1cd318f771f8b4adbb08474c996b8b759e56f30dd2d642c112e64f49b4d53</cites><orcidid>0009-0008-9932-7818 ; 0009-0005-0173-0907 ; 0000-0001-6615-5484 ; 0009-0009-6247-124X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10492658$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10492658$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Zhuoran</creatorcontrib><creatorcontrib>Wei, Yangjie</creatorcontrib><creatorcontrib>Niu, Ben</creatorcontrib><creatorcontrib>Zhang, Xiaoli</creatorcontrib><title>Automatic Condition Monitoring and Fault Diagnosis System for Power Transformers Based on Voiceprint Recognition</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Power transformer emits continuous vibration signals during working, which contain plenty of impulses and fluctuations caused by mechanical faults, and these signals are the main data source to evaluate the operational condition of a power transformer. This study researches the voiceprint features of vibration sound signals within power transformers under different operational conditions and constructs an automatic and noninvasive condition monitoring and fault diagnosis system based on acoustic characteristics. First, a normal/faulty operational condition classification module is proposed using acoustic short-time energy and zero-crossing rate to evaluate the real-time operational condition of a power transformer. Second, a multifault recognition module with finite signal samples is constructed based on the time-frequency characteristics of acoustic signals, and an automatic fault diagnosis system for power transformers is built. To improve the accuracy and robustness under dynamic noisy environments and complicated operational conditions, a multidimensional performance optimization method is proposed to handle the problems caused by environmental noises, mixed faults, and unknown faults. Experimental results demonstrate that the proposed condition monitoring and fault diagnosis system can fast distinguish the faulty operational conditions and diagnose six types of typical faults of power transformers, as well as mixed faults, under different noisy environments with an accuracy of more than 97.83%.</description><subject>Acoustics</subject><subject>Condition monitoring</subject><subject>Fault diagnosis</subject><subject>fault diagnosis system</subject><subject>Faults</subject><subject>Feature extraction</subject><subject>hidden Markov model (HMM)</subject><subject>Hidden Markov models</subject><subject>mel frequency cepstral coefficients (MFCCs)</subject><subject>Modules</subject><subject>Monitoring</subject><subject>Oil insulation</subject><subject>Real time operation</subject><subject>Recognition</subject><subject>Spectrogram</subject><subject>Transformers</subject><subject>Vibration</subject><subject>voiceprint recognition</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYjePXho4nmx39s9IoqSQDSKXjfdbZeUQIttN4Z_bxEPniaTvPPMzAPANUYjjFF1t5wtRgQRNqJUMs7xCRhgzsuiEoKcggFCWBYV4-IcXMS4RgiVgpUDsBv3yW9Vsi2ceKdtst7BhXc2-WDdCiqn4VT1mwQfrFo5H22E7_uYzBZ2PsBX_20CXAblYm63JkR4r6LRMFM-vW3NLlMSfDOtX7lf-CU469Qmmqu_OgQf08fl5LmYvzzNJuN50RLGU6GpNrjVFMuuLHEnG6Z00yDJStZWlWhkU_LKcNFRpDXRgpEWY2IE61jVMM3pENweubvgv3oTU732fXB5ZU0Rzc-zUsicQsdUG3yMwXR1Pnirwr7GqD54rbPX-uC1_vOaR26OI9YY8y_OKiK4pD_zuXXH</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yu, Zhuoran</creator><creator>Wei, Yangjie</creator><creator>Niu, Ben</creator><creator>Zhang, Xiaoli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0008-9932-7818</orcidid><orcidid>https://orcid.org/0009-0005-0173-0907</orcidid><orcidid>https://orcid.org/0000-0001-6615-5484</orcidid><orcidid>https://orcid.org/0009-0009-6247-124X</orcidid></search><sort><creationdate>2024</creationdate><title>Automatic Condition Monitoring and Fault Diagnosis System for Power Transformers Based on Voiceprint Recognition</title><author>Yu, Zhuoran ; Wei, Yangjie ; Niu, Ben ; Zhang, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-d3de1cd318f771f8b4adbb08474c996b8b759e56f30dd2d642c112e64f49b4d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Condition monitoring</topic><topic>Fault diagnosis</topic><topic>fault diagnosis system</topic><topic>Faults</topic><topic>Feature extraction</topic><topic>hidden Markov model (HMM)</topic><topic>Hidden Markov models</topic><topic>mel frequency cepstral coefficients (MFCCs)</topic><topic>Modules</topic><topic>Monitoring</topic><topic>Oil insulation</topic><topic>Real time operation</topic><topic>Recognition</topic><topic>Spectrogram</topic><topic>Transformers</topic><topic>Vibration</topic><topic>voiceprint recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zhuoran</creatorcontrib><creatorcontrib>Wei, Yangjie</creatorcontrib><creatorcontrib>Niu, Ben</creatorcontrib><creatorcontrib>Zhang, Xiaoli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Zhuoran</au><au>Wei, Yangjie</au><au>Niu, Ben</au><au>Zhang, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Condition Monitoring and Fault Diagnosis System for Power Transformers Based on Voiceprint Recognition</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Power transformer emits continuous vibration signals during working, which contain plenty of impulses and fluctuations caused by mechanical faults, and these signals are the main data source to evaluate the operational condition of a power transformer. This study researches the voiceprint features of vibration sound signals within power transformers under different operational conditions and constructs an automatic and noninvasive condition monitoring and fault diagnosis system based on acoustic characteristics. First, a normal/faulty operational condition classification module is proposed using acoustic short-time energy and zero-crossing rate to evaluate the real-time operational condition of a power transformer. Second, a multifault recognition module with finite signal samples is constructed based on the time-frequency characteristics of acoustic signals, and an automatic fault diagnosis system for power transformers is built. To improve the accuracy and robustness under dynamic noisy environments and complicated operational conditions, a multidimensional performance optimization method is proposed to handle the problems caused by environmental noises, mixed faults, and unknown faults. Experimental results demonstrate that the proposed condition monitoring and fault diagnosis system can fast distinguish the faulty operational conditions and diagnose six types of typical faults of power transformers, as well as mixed faults, under different noisy environments with an accuracy of more than 97.83%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3384551</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0008-9932-7818</orcidid><orcidid>https://orcid.org/0009-0005-0173-0907</orcidid><orcidid>https://orcid.org/0000-0001-6615-5484</orcidid><orcidid>https://orcid.org/0009-0009-6247-124X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_3037644768 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustics Condition monitoring Fault diagnosis fault diagnosis system Faults Feature extraction hidden Markov model (HMM) Hidden Markov models mel frequency cepstral coefficients (MFCCs) Modules Monitoring Oil insulation Real time operation Recognition Spectrogram Transformers Vibration voiceprint recognition |
title | Automatic Condition Monitoring and Fault Diagnosis System for Power Transformers Based on Voiceprint Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Condition%20Monitoring%20and%20Fault%20Diagnosis%20System%20for%20Power%20Transformers%20Based%20on%20Voiceprint%20Recognition&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Yu,%20Zhuoran&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3384551&rft_dat=%3Cproquest_RIE%3E3037644768%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037644768&rft_id=info:pmid/&rft_ieee_id=10492658&rfr_iscdi=true |