Automatic Condition Monitoring and Fault Diagnosis System for Power Transformers Based on Voiceprint Recognition

Power transformer emits continuous vibration signals during working, which contain plenty of impulses and fluctuations caused by mechanical faults, and these signals are the main data source to evaluate the operational condition of a power transformer. This study researches the voiceprint features o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-11
Hauptverfasser: Yu, Zhuoran, Wei, Yangjie, Niu, Ben, Zhang, Xiaoli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Yu, Zhuoran
Wei, Yangjie
Niu, Ben
Zhang, Xiaoli
description Power transformer emits continuous vibration signals during working, which contain plenty of impulses and fluctuations caused by mechanical faults, and these signals are the main data source to evaluate the operational condition of a power transformer. This study researches the voiceprint features of vibration sound signals within power transformers under different operational conditions and constructs an automatic and noninvasive condition monitoring and fault diagnosis system based on acoustic characteristics. First, a normal/faulty operational condition classification module is proposed using acoustic short-time energy and zero-crossing rate to evaluate the real-time operational condition of a power transformer. Second, a multifault recognition module with finite signal samples is constructed based on the time-frequency characteristics of acoustic signals, and an automatic fault diagnosis system for power transformers is built. To improve the accuracy and robustness under dynamic noisy environments and complicated operational conditions, a multidimensional performance optimization method is proposed to handle the problems caused by environmental noises, mixed faults, and unknown faults. Experimental results demonstrate that the proposed condition monitoring and fault diagnosis system can fast distinguish the faulty operational conditions and diagnose six types of typical faults of power transformers, as well as mixed faults, under different noisy environments with an accuracy of more than 97.83%.
doi_str_mv 10.1109/TIM.2024.3384551
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3037644768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10492658</ieee_id><sourcerecordid>3037644768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-d3de1cd318f771f8b4adbb08474c996b8b759e56f30dd2d642c112e64f49b4d53</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYjePXho4nmx39s9IoqSQDSKXjfdbZeUQIttN4Z_bxEPniaTvPPMzAPANUYjjFF1t5wtRgQRNqJUMs7xCRhgzsuiEoKcggFCWBYV4-IcXMS4RgiVgpUDsBv3yW9Vsi2ceKdtst7BhXc2-WDdCiqn4VT1mwQfrFo5H22E7_uYzBZ2PsBX_20CXAblYm63JkR4r6LRMFM-vW3NLlMSfDOtX7lf-CU469Qmmqu_OgQf08fl5LmYvzzNJuN50RLGU6GpNrjVFMuuLHEnG6Z00yDJStZWlWhkU_LKcNFRpDXRgpEWY2IE61jVMM3pENweubvgv3oTU732fXB5ZU0Rzc-zUsicQsdUG3yMwXR1Pnirwr7GqD54rbPX-uC1_vOaR26OI9YY8y_OKiK4pD_zuXXH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037644768</pqid></control><display><type>article</type><title>Automatic Condition Monitoring and Fault Diagnosis System for Power Transformers Based on Voiceprint Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Zhuoran ; Wei, Yangjie ; Niu, Ben ; Zhang, Xiaoli</creator><creatorcontrib>Yu, Zhuoran ; Wei, Yangjie ; Niu, Ben ; Zhang, Xiaoli</creatorcontrib><description>Power transformer emits continuous vibration signals during working, which contain plenty of impulses and fluctuations caused by mechanical faults, and these signals are the main data source to evaluate the operational condition of a power transformer. This study researches the voiceprint features of vibration sound signals within power transformers under different operational conditions and constructs an automatic and noninvasive condition monitoring and fault diagnosis system based on acoustic characteristics. First, a normal/faulty operational condition classification module is proposed using acoustic short-time energy and zero-crossing rate to evaluate the real-time operational condition of a power transformer. Second, a multifault recognition module with finite signal samples is constructed based on the time-frequency characteristics of acoustic signals, and an automatic fault diagnosis system for power transformers is built. To improve the accuracy and robustness under dynamic noisy environments and complicated operational conditions, a multidimensional performance optimization method is proposed to handle the problems caused by environmental noises, mixed faults, and unknown faults. Experimental results demonstrate that the proposed condition monitoring and fault diagnosis system can fast distinguish the faulty operational conditions and diagnose six types of typical faults of power transformers, as well as mixed faults, under different noisy environments with an accuracy of more than 97.83%.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3384551</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustics ; Condition monitoring ; Fault diagnosis ; fault diagnosis system ; Faults ; Feature extraction ; hidden Markov model (HMM) ; Hidden Markov models ; mel frequency cepstral coefficients (MFCCs) ; Modules ; Monitoring ; Oil insulation ; Real time operation ; Recognition ; Spectrogram ; Transformers ; Vibration ; voiceprint recognition</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-d3de1cd318f771f8b4adbb08474c996b8b759e56f30dd2d642c112e64f49b4d53</cites><orcidid>0009-0008-9932-7818 ; 0009-0005-0173-0907 ; 0000-0001-6615-5484 ; 0009-0009-6247-124X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10492658$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10492658$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Zhuoran</creatorcontrib><creatorcontrib>Wei, Yangjie</creatorcontrib><creatorcontrib>Niu, Ben</creatorcontrib><creatorcontrib>Zhang, Xiaoli</creatorcontrib><title>Automatic Condition Monitoring and Fault Diagnosis System for Power Transformers Based on Voiceprint Recognition</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Power transformer emits continuous vibration signals during working, which contain plenty of impulses and fluctuations caused by mechanical faults, and these signals are the main data source to evaluate the operational condition of a power transformer. This study researches the voiceprint features of vibration sound signals within power transformers under different operational conditions and constructs an automatic and noninvasive condition monitoring and fault diagnosis system based on acoustic characteristics. First, a normal/faulty operational condition classification module is proposed using acoustic short-time energy and zero-crossing rate to evaluate the real-time operational condition of a power transformer. Second, a multifault recognition module with finite signal samples is constructed based on the time-frequency characteristics of acoustic signals, and an automatic fault diagnosis system for power transformers is built. To improve the accuracy and robustness under dynamic noisy environments and complicated operational conditions, a multidimensional performance optimization method is proposed to handle the problems caused by environmental noises, mixed faults, and unknown faults. Experimental results demonstrate that the proposed condition monitoring and fault diagnosis system can fast distinguish the faulty operational conditions and diagnose six types of typical faults of power transformers, as well as mixed faults, under different noisy environments with an accuracy of more than 97.83%.</description><subject>Acoustics</subject><subject>Condition monitoring</subject><subject>Fault diagnosis</subject><subject>fault diagnosis system</subject><subject>Faults</subject><subject>Feature extraction</subject><subject>hidden Markov model (HMM)</subject><subject>Hidden Markov models</subject><subject>mel frequency cepstral coefficients (MFCCs)</subject><subject>Modules</subject><subject>Monitoring</subject><subject>Oil insulation</subject><subject>Real time operation</subject><subject>Recognition</subject><subject>Spectrogram</subject><subject>Transformers</subject><subject>Vibration</subject><subject>voiceprint recognition</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYjePXho4nmx39s9IoqSQDSKXjfdbZeUQIttN4Z_bxEPniaTvPPMzAPANUYjjFF1t5wtRgQRNqJUMs7xCRhgzsuiEoKcggFCWBYV4-IcXMS4RgiVgpUDsBv3yW9Vsi2ceKdtst7BhXc2-WDdCiqn4VT1mwQfrFo5H22E7_uYzBZ2PsBX_20CXAblYm63JkR4r6LRMFM-vW3NLlMSfDOtX7lf-CU469Qmmqu_OgQf08fl5LmYvzzNJuN50RLGU6GpNrjVFMuuLHEnG6Z00yDJStZWlWhkU_LKcNFRpDXRgpEWY2IE61jVMM3pENweubvgv3oTU732fXB5ZU0Rzc-zUsicQsdUG3yMwXR1Pnirwr7GqD54rbPX-uC1_vOaR26OI9YY8y_OKiK4pD_zuXXH</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yu, Zhuoran</creator><creator>Wei, Yangjie</creator><creator>Niu, Ben</creator><creator>Zhang, Xiaoli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0008-9932-7818</orcidid><orcidid>https://orcid.org/0009-0005-0173-0907</orcidid><orcidid>https://orcid.org/0000-0001-6615-5484</orcidid><orcidid>https://orcid.org/0009-0009-6247-124X</orcidid></search><sort><creationdate>2024</creationdate><title>Automatic Condition Monitoring and Fault Diagnosis System for Power Transformers Based on Voiceprint Recognition</title><author>Yu, Zhuoran ; Wei, Yangjie ; Niu, Ben ; Zhang, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-d3de1cd318f771f8b4adbb08474c996b8b759e56f30dd2d642c112e64f49b4d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Condition monitoring</topic><topic>Fault diagnosis</topic><topic>fault diagnosis system</topic><topic>Faults</topic><topic>Feature extraction</topic><topic>hidden Markov model (HMM)</topic><topic>Hidden Markov models</topic><topic>mel frequency cepstral coefficients (MFCCs)</topic><topic>Modules</topic><topic>Monitoring</topic><topic>Oil insulation</topic><topic>Real time operation</topic><topic>Recognition</topic><topic>Spectrogram</topic><topic>Transformers</topic><topic>Vibration</topic><topic>voiceprint recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zhuoran</creatorcontrib><creatorcontrib>Wei, Yangjie</creatorcontrib><creatorcontrib>Niu, Ben</creatorcontrib><creatorcontrib>Zhang, Xiaoli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Zhuoran</au><au>Wei, Yangjie</au><au>Niu, Ben</au><au>Zhang, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Condition Monitoring and Fault Diagnosis System for Power Transformers Based on Voiceprint Recognition</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Power transformer emits continuous vibration signals during working, which contain plenty of impulses and fluctuations caused by mechanical faults, and these signals are the main data source to evaluate the operational condition of a power transformer. This study researches the voiceprint features of vibration sound signals within power transformers under different operational conditions and constructs an automatic and noninvasive condition monitoring and fault diagnosis system based on acoustic characteristics. First, a normal/faulty operational condition classification module is proposed using acoustic short-time energy and zero-crossing rate to evaluate the real-time operational condition of a power transformer. Second, a multifault recognition module with finite signal samples is constructed based on the time-frequency characteristics of acoustic signals, and an automatic fault diagnosis system for power transformers is built. To improve the accuracy and robustness under dynamic noisy environments and complicated operational conditions, a multidimensional performance optimization method is proposed to handle the problems caused by environmental noises, mixed faults, and unknown faults. Experimental results demonstrate that the proposed condition monitoring and fault diagnosis system can fast distinguish the faulty operational conditions and diagnose six types of typical faults of power transformers, as well as mixed faults, under different noisy environments with an accuracy of more than 97.83%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3384551</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0008-9932-7818</orcidid><orcidid>https://orcid.org/0009-0005-0173-0907</orcidid><orcidid>https://orcid.org/0000-0001-6615-5484</orcidid><orcidid>https://orcid.org/0009-0009-6247-124X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_3037644768
source IEEE Electronic Library (IEL)
subjects Acoustics
Condition monitoring
Fault diagnosis
fault diagnosis system
Faults
Feature extraction
hidden Markov model (HMM)
Hidden Markov models
mel frequency cepstral coefficients (MFCCs)
Modules
Monitoring
Oil insulation
Real time operation
Recognition
Spectrogram
Transformers
Vibration
voiceprint recognition
title Automatic Condition Monitoring and Fault Diagnosis System for Power Transformers Based on Voiceprint Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Condition%20Monitoring%20and%20Fault%20Diagnosis%20System%20for%20Power%20Transformers%20Based%20on%20Voiceprint%20Recognition&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Yu,%20Zhuoran&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3384551&rft_dat=%3Cproquest_RIE%3E3037644768%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037644768&rft_id=info:pmid/&rft_ieee_id=10492658&rfr_iscdi=true