Scaling Uncertainty Quantification From Patches to Scenes Through Discontinuity-Aware Stitching
Reconstructing spatially continuous 2-D fields out of their individually derived building blocks typically introduces artifacts that decrease the overall perceptual quality of the field. Machine learning (ML) applications encounter such a challenge when patching a U-net-like architecture output. Num...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!