Scaling Uncertainty Quantification From Patches to Scenes Through Discontinuity-Aware Stitching

Reconstructing spatially continuous 2-D fields out of their individually derived building blocks typically introduces artifacts that decrease the overall perceptual quality of the field. Machine learning (ML) applications encounter such a challenge when patching a U-net-like architecture output. Num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5
Hauptverfasser: Steckler, Stephen, Orescanin, Marko, Powell, Scott W., Ortiz, Pedro, Petkovic, Veljko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!