Learning Seismic Low-Frequency Extrapolation in a Latent Space Using Limited Data
Low-frequency (LF) information in seismic exploration has long been a subject of great interest because of its association with long-scale subsurface features, which ensures the convergence of seismic inversion toward an accurate solution. However, the absence of LF component in field seismic data i...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 21 |
creator | Jia, Anqi Sun, Jian Wan, Xiaolei Du, Bo |
description | Low-frequency (LF) information in seismic exploration has long been a subject of great interest because of its association with long-scale subsurface features, which ensures the convergence of seismic inversion toward an accurate solution. However, the absence of LF component in field seismic data is a common occurrence due to restrictions posed by data acquisition equipment and environmental constraints. Thus, the reconstruction of LF information from bandlimited seismic data is a pressing issue. In this letter, we introduce a data-driven deep-learning approach for seismic LF extrapolation within a latent space, which is defined by an autoencoder (AE) in a self-supervised manner. Initially, seismic data undergoes compression into a low-dimensional latent space through the encoder component of AE. Subsequently, LF components are extrapolated within this latent space, which can be later reformulated into the data space using the decoder component of AE. Two training strategies, either synchronous or step-wise, are introduced to train the network by utilizing specific loss designs. In numerical experiments, the mean absolute percentage errors (MAPEs) of the LF extrapolation results for all validation samples, processed via traditional end-to-end strategy without/with an enriched dataset, synchronous, and step-wise training with limited data, register at 52.5%, 20.6%, 13.3%, and 10.6%, respectively. The findings attest to the efficacy of the AE in the mitigation of redundant information, thereby streamlining the computational complexity inherent to frequency extrapolation. Notably, the proposed approaches achieve accurate LF extrapolation performance with a limited amount of data. |
doi_str_mv | 10.1109/LGRS.2024.3385427 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3037635310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10493133</ieee_id><sourcerecordid>3037635310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-c55871744f7da9224b4a13790684d29247c883102a4e6f1935327d72145783723</originalsourceid><addsrcrecordid>eNpNkM1KAzEURoMoWKsPILgIuJ6a3yZZSrVVGBCtBXchZjKS0mbGJEX79mZoF67uXXzn3o8DwDVGE4yRuqsXb8sJQYRNKJWcEXECRphzWSEu8OmwM15xJT_OwUVKa1SSUooReK2dicGHL7h0Pm29hXX3U82j-965YPfw8TdH03cbk30XoA_QwNpkFzJc9sY6uEoDW_utz66BDyabS3DWmk1yV8c5Bqv54_vsqapfFs-z-7qyRLFc2VJOYMFYKxqjCGGfzGAqFJpK1hBFmLBSUoyIYW7aYkU5JaIRBDMuJBWEjsHt4W4fu1I2Zb3udjGUl5oiKqYFwKik8CFlY5dSdK3uo9-auNcY6cGcHszpwZw-mivMzYHxzrl_eaYoppT-AXLtZ1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037635310</pqid></control><display><type>article</type><title>Learning Seismic Low-Frequency Extrapolation in a Latent Space Using Limited Data</title><source>IEEE Electronic Library (IEL)</source><creator>Jia, Anqi ; Sun, Jian ; Wan, Xiaolei ; Du, Bo</creator><creatorcontrib>Jia, Anqi ; Sun, Jian ; Wan, Xiaolei ; Du, Bo</creatorcontrib><description>Low-frequency (LF) information in seismic exploration has long been a subject of great interest because of its association with long-scale subsurface features, which ensures the convergence of seismic inversion toward an accurate solution. However, the absence of LF component in field seismic data is a common occurrence due to restrictions posed by data acquisition equipment and environmental constraints. Thus, the reconstruction of LF information from bandlimited seismic data is a pressing issue. In this letter, we introduce a data-driven deep-learning approach for seismic LF extrapolation within a latent space, which is defined by an autoencoder (AE) in a self-supervised manner. Initially, seismic data undergoes compression into a low-dimensional latent space through the encoder component of AE. Subsequently, LF components are extrapolated within this latent space, which can be later reformulated into the data space using the decoder component of AE. Two training strategies, either synchronous or step-wise, are introduced to train the network by utilizing specific loss designs. In numerical experiments, the mean absolute percentage errors (MAPEs) of the LF extrapolation results for all validation samples, processed via traditional end-to-end strategy without/with an enriched dataset, synchronous, and step-wise training with limited data, register at 52.5%, 20.6%, 13.3%, and 10.6%, respectively. The findings attest to the efficacy of the AE in the mitigation of redundant information, thereby streamlining the computational complexity inherent to frequency extrapolation. Notably, the proposed approaches achieve accurate LF extrapolation performance with a limited amount of data.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3385427</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autoencoder (AE) ; Compression ; Data acquisition ; Data compression ; Decoding ; Deep learning ; deep learning (DL) ; Extrapolation ; Frequency-domain analysis ; Graphical models ; low-frequency (LF) extrapolation ; Mitigation ; Numerical experiments ; Seismic activity ; Seismic data ; Seismic exploration ; Seismic surveys ; Seismological data ; Sun ; Time-domain analysis ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-c55871744f7da9224b4a13790684d29247c883102a4e6f1935327d72145783723</citedby><cites>FETCH-LOGICAL-c294t-c55871744f7da9224b4a13790684d29247c883102a4e6f1935327d72145783723</cites><orcidid>0000-0001-6530-9007 ; 0009-0005-9643-5731 ; 0009-0004-1404-3279 ; 0009-0003-1321-6441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10493133$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10493133$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jia, Anqi</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Wan, Xiaolei</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><title>Learning Seismic Low-Frequency Extrapolation in a Latent Space Using Limited Data</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Low-frequency (LF) information in seismic exploration has long been a subject of great interest because of its association with long-scale subsurface features, which ensures the convergence of seismic inversion toward an accurate solution. However, the absence of LF component in field seismic data is a common occurrence due to restrictions posed by data acquisition equipment and environmental constraints. Thus, the reconstruction of LF information from bandlimited seismic data is a pressing issue. In this letter, we introduce a data-driven deep-learning approach for seismic LF extrapolation within a latent space, which is defined by an autoencoder (AE) in a self-supervised manner. Initially, seismic data undergoes compression into a low-dimensional latent space through the encoder component of AE. Subsequently, LF components are extrapolated within this latent space, which can be later reformulated into the data space using the decoder component of AE. Two training strategies, either synchronous or step-wise, are introduced to train the network by utilizing specific loss designs. In numerical experiments, the mean absolute percentage errors (MAPEs) of the LF extrapolation results for all validation samples, processed via traditional end-to-end strategy without/with an enriched dataset, synchronous, and step-wise training with limited data, register at 52.5%, 20.6%, 13.3%, and 10.6%, respectively. The findings attest to the efficacy of the AE in the mitigation of redundant information, thereby streamlining the computational complexity inherent to frequency extrapolation. Notably, the proposed approaches achieve accurate LF extrapolation performance with a limited amount of data.</description><subject>Autoencoder (AE)</subject><subject>Compression</subject><subject>Data acquisition</subject><subject>Data compression</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>deep learning (DL)</subject><subject>Extrapolation</subject><subject>Frequency-domain analysis</subject><subject>Graphical models</subject><subject>low-frequency (LF) extrapolation</subject><subject>Mitigation</subject><subject>Numerical experiments</subject><subject>Seismic activity</subject><subject>Seismic data</subject><subject>Seismic exploration</subject><subject>Seismic surveys</subject><subject>Seismological data</subject><subject>Sun</subject><subject>Time-domain analysis</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KAzEURoMoWKsPILgIuJ6a3yZZSrVVGBCtBXchZjKS0mbGJEX79mZoF67uXXzn3o8DwDVGE4yRuqsXb8sJQYRNKJWcEXECRphzWSEu8OmwM15xJT_OwUVKa1SSUooReK2dicGHL7h0Pm29hXX3U82j-965YPfw8TdH03cbk30XoA_QwNpkFzJc9sY6uEoDW_utz66BDyabS3DWmk1yV8c5Bqv54_vsqapfFs-z-7qyRLFc2VJOYMFYKxqjCGGfzGAqFJpK1hBFmLBSUoyIYW7aYkU5JaIRBDMuJBWEjsHt4W4fu1I2Zb3udjGUl5oiKqYFwKik8CFlY5dSdK3uo9-auNcY6cGcHszpwZw-mivMzYHxzrl_eaYoppT-AXLtZ1g</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jia, Anqi</creator><creator>Sun, Jian</creator><creator>Wan, Xiaolei</creator><creator>Du, Bo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6530-9007</orcidid><orcidid>https://orcid.org/0009-0005-9643-5731</orcidid><orcidid>https://orcid.org/0009-0004-1404-3279</orcidid><orcidid>https://orcid.org/0009-0003-1321-6441</orcidid></search><sort><creationdate>2024</creationdate><title>Learning Seismic Low-Frequency Extrapolation in a Latent Space Using Limited Data</title><author>Jia, Anqi ; Sun, Jian ; Wan, Xiaolei ; Du, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-c55871744f7da9224b4a13790684d29247c883102a4e6f1935327d72145783723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autoencoder (AE)</topic><topic>Compression</topic><topic>Data acquisition</topic><topic>Data compression</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>deep learning (DL)</topic><topic>Extrapolation</topic><topic>Frequency-domain analysis</topic><topic>Graphical models</topic><topic>low-frequency (LF) extrapolation</topic><topic>Mitigation</topic><topic>Numerical experiments</topic><topic>Seismic activity</topic><topic>Seismic data</topic><topic>Seismic exploration</topic><topic>Seismic surveys</topic><topic>Seismological data</topic><topic>Sun</topic><topic>Time-domain analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Anqi</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Wan, Xiaolei</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jia, Anqi</au><au>Sun, Jian</au><au>Wan, Xiaolei</au><au>Du, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Seismic Low-Frequency Extrapolation in a Latent Space Using Limited Data</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Low-frequency (LF) information in seismic exploration has long been a subject of great interest because of its association with long-scale subsurface features, which ensures the convergence of seismic inversion toward an accurate solution. However, the absence of LF component in field seismic data is a common occurrence due to restrictions posed by data acquisition equipment and environmental constraints. Thus, the reconstruction of LF information from bandlimited seismic data is a pressing issue. In this letter, we introduce a data-driven deep-learning approach for seismic LF extrapolation within a latent space, which is defined by an autoencoder (AE) in a self-supervised manner. Initially, seismic data undergoes compression into a low-dimensional latent space through the encoder component of AE. Subsequently, LF components are extrapolated within this latent space, which can be later reformulated into the data space using the decoder component of AE. Two training strategies, either synchronous or step-wise, are introduced to train the network by utilizing specific loss designs. In numerical experiments, the mean absolute percentage errors (MAPEs) of the LF extrapolation results for all validation samples, processed via traditional end-to-end strategy without/with an enriched dataset, synchronous, and step-wise training with limited data, register at 52.5%, 20.6%, 13.3%, and 10.6%, respectively. The findings attest to the efficacy of the AE in the mitigation of redundant information, thereby streamlining the computational complexity inherent to frequency extrapolation. Notably, the proposed approaches achieve accurate LF extrapolation performance with a limited amount of data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3385427</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6530-9007</orcidid><orcidid>https://orcid.org/0009-0005-9643-5731</orcidid><orcidid>https://orcid.org/0009-0004-1404-3279</orcidid><orcidid>https://orcid.org/0009-0003-1321-6441</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_3037635310 |
source | IEEE Electronic Library (IEL) |
subjects | Autoencoder (AE) Compression Data acquisition Data compression Decoding Deep learning deep learning (DL) Extrapolation Frequency-domain analysis Graphical models low-frequency (LF) extrapolation Mitigation Numerical experiments Seismic activity Seismic data Seismic exploration Seismic surveys Seismological data Sun Time-domain analysis Training |
title | Learning Seismic Low-Frequency Extrapolation in a Latent Space Using Limited Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Seismic%20Low-Frequency%20Extrapolation%20in%20a%20Latent%20Space%20Using%20Limited%20Data&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Jia,%20Anqi&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3385427&rft_dat=%3Cproquest_RIE%3E3037635310%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037635310&rft_id=info:pmid/&rft_ieee_id=10493133&rfr_iscdi=true |