Learning Seismic Low-Frequency Extrapolation in a Latent Space Using Limited Data

Low-frequency (LF) information in seismic exploration has long been a subject of great interest because of its association with long-scale subsurface features, which ensures the convergence of seismic inversion toward an accurate solution. However, the absence of LF component in field seismic data i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5
Hauptverfasser: Jia, Anqi, Sun, Jian, Wan, Xiaolei, Du, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 21
creator Jia, Anqi
Sun, Jian
Wan, Xiaolei
Du, Bo
description Low-frequency (LF) information in seismic exploration has long been a subject of great interest because of its association with long-scale subsurface features, which ensures the convergence of seismic inversion toward an accurate solution. However, the absence of LF component in field seismic data is a common occurrence due to restrictions posed by data acquisition equipment and environmental constraints. Thus, the reconstruction of LF information from bandlimited seismic data is a pressing issue. In this letter, we introduce a data-driven deep-learning approach for seismic LF extrapolation within a latent space, which is defined by an autoencoder (AE) in a self-supervised manner. Initially, seismic data undergoes compression into a low-dimensional latent space through the encoder component of AE. Subsequently, LF components are extrapolated within this latent space, which can be later reformulated into the data space using the decoder component of AE. Two training strategies, either synchronous or step-wise, are introduced to train the network by utilizing specific loss designs. In numerical experiments, the mean absolute percentage errors (MAPEs) of the LF extrapolation results for all validation samples, processed via traditional end-to-end strategy without/with an enriched dataset, synchronous, and step-wise training with limited data, register at 52.5%, 20.6%, 13.3%, and 10.6%, respectively. The findings attest to the efficacy of the AE in the mitigation of redundant information, thereby streamlining the computational complexity inherent to frequency extrapolation. Notably, the proposed approaches achieve accurate LF extrapolation performance with a limited amount of data.
doi_str_mv 10.1109/LGRS.2024.3385427
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3037635310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10493133</ieee_id><sourcerecordid>3037635310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-c55871744f7da9224b4a13790684d29247c883102a4e6f1935327d72145783723</originalsourceid><addsrcrecordid>eNpNkM1KAzEURoMoWKsPILgIuJ6a3yZZSrVVGBCtBXchZjKS0mbGJEX79mZoF67uXXzn3o8DwDVGE4yRuqsXb8sJQYRNKJWcEXECRphzWSEu8OmwM15xJT_OwUVKa1SSUooReK2dicGHL7h0Pm29hXX3U82j-965YPfw8TdH03cbk30XoA_QwNpkFzJc9sY6uEoDW_utz66BDyabS3DWmk1yV8c5Bqv54_vsqapfFs-z-7qyRLFc2VJOYMFYKxqjCGGfzGAqFJpK1hBFmLBSUoyIYW7aYkU5JaIRBDMuJBWEjsHt4W4fu1I2Zb3udjGUl5oiKqYFwKik8CFlY5dSdK3uo9-auNcY6cGcHszpwZw-mivMzYHxzrl_eaYoppT-AXLtZ1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037635310</pqid></control><display><type>article</type><title>Learning Seismic Low-Frequency Extrapolation in a Latent Space Using Limited Data</title><source>IEEE Electronic Library (IEL)</source><creator>Jia, Anqi ; Sun, Jian ; Wan, Xiaolei ; Du, Bo</creator><creatorcontrib>Jia, Anqi ; Sun, Jian ; Wan, Xiaolei ; Du, Bo</creatorcontrib><description>Low-frequency (LF) information in seismic exploration has long been a subject of great interest because of its association with long-scale subsurface features, which ensures the convergence of seismic inversion toward an accurate solution. However, the absence of LF component in field seismic data is a common occurrence due to restrictions posed by data acquisition equipment and environmental constraints. Thus, the reconstruction of LF information from bandlimited seismic data is a pressing issue. In this letter, we introduce a data-driven deep-learning approach for seismic LF extrapolation within a latent space, which is defined by an autoencoder (AE) in a self-supervised manner. Initially, seismic data undergoes compression into a low-dimensional latent space through the encoder component of AE. Subsequently, LF components are extrapolated within this latent space, which can be later reformulated into the data space using the decoder component of AE. Two training strategies, either synchronous or step-wise, are introduced to train the network by utilizing specific loss designs. In numerical experiments, the mean absolute percentage errors (MAPEs) of the LF extrapolation results for all validation samples, processed via traditional end-to-end strategy without/with an enriched dataset, synchronous, and step-wise training with limited data, register at 52.5%, 20.6%, 13.3%, and 10.6%, respectively. The findings attest to the efficacy of the AE in the mitigation of redundant information, thereby streamlining the computational complexity inherent to frequency extrapolation. Notably, the proposed approaches achieve accurate LF extrapolation performance with a limited amount of data.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3385427</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autoencoder (AE) ; Compression ; Data acquisition ; Data compression ; Decoding ; Deep learning ; deep learning (DL) ; Extrapolation ; Frequency-domain analysis ; Graphical models ; low-frequency (LF) extrapolation ; Mitigation ; Numerical experiments ; Seismic activity ; Seismic data ; Seismic exploration ; Seismic surveys ; Seismological data ; Sun ; Time-domain analysis ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-c55871744f7da9224b4a13790684d29247c883102a4e6f1935327d72145783723</citedby><cites>FETCH-LOGICAL-c294t-c55871744f7da9224b4a13790684d29247c883102a4e6f1935327d72145783723</cites><orcidid>0000-0001-6530-9007 ; 0009-0005-9643-5731 ; 0009-0004-1404-3279 ; 0009-0003-1321-6441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10493133$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10493133$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jia, Anqi</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Wan, Xiaolei</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><title>Learning Seismic Low-Frequency Extrapolation in a Latent Space Using Limited Data</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Low-frequency (LF) information in seismic exploration has long been a subject of great interest because of its association with long-scale subsurface features, which ensures the convergence of seismic inversion toward an accurate solution. However, the absence of LF component in field seismic data is a common occurrence due to restrictions posed by data acquisition equipment and environmental constraints. Thus, the reconstruction of LF information from bandlimited seismic data is a pressing issue. In this letter, we introduce a data-driven deep-learning approach for seismic LF extrapolation within a latent space, which is defined by an autoencoder (AE) in a self-supervised manner. Initially, seismic data undergoes compression into a low-dimensional latent space through the encoder component of AE. Subsequently, LF components are extrapolated within this latent space, which can be later reformulated into the data space using the decoder component of AE. Two training strategies, either synchronous or step-wise, are introduced to train the network by utilizing specific loss designs. In numerical experiments, the mean absolute percentage errors (MAPEs) of the LF extrapolation results for all validation samples, processed via traditional end-to-end strategy without/with an enriched dataset, synchronous, and step-wise training with limited data, register at 52.5%, 20.6%, 13.3%, and 10.6%, respectively. The findings attest to the efficacy of the AE in the mitigation of redundant information, thereby streamlining the computational complexity inherent to frequency extrapolation. Notably, the proposed approaches achieve accurate LF extrapolation performance with a limited amount of data.</description><subject>Autoencoder (AE)</subject><subject>Compression</subject><subject>Data acquisition</subject><subject>Data compression</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>deep learning (DL)</subject><subject>Extrapolation</subject><subject>Frequency-domain analysis</subject><subject>Graphical models</subject><subject>low-frequency (LF) extrapolation</subject><subject>Mitigation</subject><subject>Numerical experiments</subject><subject>Seismic activity</subject><subject>Seismic data</subject><subject>Seismic exploration</subject><subject>Seismic surveys</subject><subject>Seismological data</subject><subject>Sun</subject><subject>Time-domain analysis</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KAzEURoMoWKsPILgIuJ6a3yZZSrVVGBCtBXchZjKS0mbGJEX79mZoF67uXXzn3o8DwDVGE4yRuqsXb8sJQYRNKJWcEXECRphzWSEu8OmwM15xJT_OwUVKa1SSUooReK2dicGHL7h0Pm29hXX3U82j-965YPfw8TdH03cbk30XoA_QwNpkFzJc9sY6uEoDW_utz66BDyabS3DWmk1yV8c5Bqv54_vsqapfFs-z-7qyRLFc2VJOYMFYKxqjCGGfzGAqFJpK1hBFmLBSUoyIYW7aYkU5JaIRBDMuJBWEjsHt4W4fu1I2Zb3udjGUl5oiKqYFwKik8CFlY5dSdK3uo9-auNcY6cGcHszpwZw-mivMzYHxzrl_eaYoppT-AXLtZ1g</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jia, Anqi</creator><creator>Sun, Jian</creator><creator>Wan, Xiaolei</creator><creator>Du, Bo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6530-9007</orcidid><orcidid>https://orcid.org/0009-0005-9643-5731</orcidid><orcidid>https://orcid.org/0009-0004-1404-3279</orcidid><orcidid>https://orcid.org/0009-0003-1321-6441</orcidid></search><sort><creationdate>2024</creationdate><title>Learning Seismic Low-Frequency Extrapolation in a Latent Space Using Limited Data</title><author>Jia, Anqi ; Sun, Jian ; Wan, Xiaolei ; Du, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-c55871744f7da9224b4a13790684d29247c883102a4e6f1935327d72145783723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autoencoder (AE)</topic><topic>Compression</topic><topic>Data acquisition</topic><topic>Data compression</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>deep learning (DL)</topic><topic>Extrapolation</topic><topic>Frequency-domain analysis</topic><topic>Graphical models</topic><topic>low-frequency (LF) extrapolation</topic><topic>Mitigation</topic><topic>Numerical experiments</topic><topic>Seismic activity</topic><topic>Seismic data</topic><topic>Seismic exploration</topic><topic>Seismic surveys</topic><topic>Seismological data</topic><topic>Sun</topic><topic>Time-domain analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Anqi</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Wan, Xiaolei</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jia, Anqi</au><au>Sun, Jian</au><au>Wan, Xiaolei</au><au>Du, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Seismic Low-Frequency Extrapolation in a Latent Space Using Limited Data</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Low-frequency (LF) information in seismic exploration has long been a subject of great interest because of its association with long-scale subsurface features, which ensures the convergence of seismic inversion toward an accurate solution. However, the absence of LF component in field seismic data is a common occurrence due to restrictions posed by data acquisition equipment and environmental constraints. Thus, the reconstruction of LF information from bandlimited seismic data is a pressing issue. In this letter, we introduce a data-driven deep-learning approach for seismic LF extrapolation within a latent space, which is defined by an autoencoder (AE) in a self-supervised manner. Initially, seismic data undergoes compression into a low-dimensional latent space through the encoder component of AE. Subsequently, LF components are extrapolated within this latent space, which can be later reformulated into the data space using the decoder component of AE. Two training strategies, either synchronous or step-wise, are introduced to train the network by utilizing specific loss designs. In numerical experiments, the mean absolute percentage errors (MAPEs) of the LF extrapolation results for all validation samples, processed via traditional end-to-end strategy without/with an enriched dataset, synchronous, and step-wise training with limited data, register at 52.5%, 20.6%, 13.3%, and 10.6%, respectively. The findings attest to the efficacy of the AE in the mitigation of redundant information, thereby streamlining the computational complexity inherent to frequency extrapolation. Notably, the proposed approaches achieve accurate LF extrapolation performance with a limited amount of data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3385427</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6530-9007</orcidid><orcidid>https://orcid.org/0009-0005-9643-5731</orcidid><orcidid>https://orcid.org/0009-0004-1404-3279</orcidid><orcidid>https://orcid.org/0009-0003-1321-6441</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_3037635310
source IEEE Electronic Library (IEL)
subjects Autoencoder (AE)
Compression
Data acquisition
Data compression
Decoding
Deep learning
deep learning (DL)
Extrapolation
Frequency-domain analysis
Graphical models
low-frequency (LF) extrapolation
Mitigation
Numerical experiments
Seismic activity
Seismic data
Seismic exploration
Seismic surveys
Seismological data
Sun
Time-domain analysis
Training
title Learning Seismic Low-Frequency Extrapolation in a Latent Space Using Limited Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Seismic%20Low-Frequency%20Extrapolation%20in%20a%20Latent%20Space%20Using%20Limited%20Data&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Jia,%20Anqi&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3385427&rft_dat=%3Cproquest_RIE%3E3037635310%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037635310&rft_id=info:pmid/&rft_ieee_id=10493133&rfr_iscdi=true