Structured barycentric forms for interpolation-based data-driven reduced modeling of second-order systems

An essential tool in data-driven modeling of dynamical systems from frequency response measurements is the barycentric form of the underlying rational transfer function. In this work, we propose structured barycentric forms for modeling dynamical systems with second-order time derivatives using thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2024-04, Vol.50 (2), Article 26
Hauptverfasser: Gosea, Ion Victor, Gugercin, Serkan, Werner, Steffen W. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Advances in computational mathematics
container_volume 50
creator Gosea, Ion Victor
Gugercin, Serkan
Werner, Steffen W. R.
description An essential tool in data-driven modeling of dynamical systems from frequency response measurements is the barycentric form of the underlying rational transfer function. In this work, we propose structured barycentric forms for modeling dynamical systems with second-order time derivatives using their frequency domain input-output data. By imposing a set of interpolation conditions, the systems’ transfer functions are rewritten in different barycentric forms using different parametrizations. Loewner-like algorithms are developed for the explicit computation of second-order systems from data based on the developed barycentric forms. Numerical experiments show the performance of these new structured data-driven modeling methods compared to other interpolation-based data-driven modeling techniques from the literature.
doi_str_mv 10.1007/s10444-024-10118-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3037523418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037523418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-2a58788d81e7e286727c9327287e1903f1cca64ff96589ce1161c340ae01ab03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52gmyW6yRyl-QcGDvYc0O1u2dJOaZIX-e1MrePMyM8y8zwzzEnIL7B4YUw8JmJSSMi4pMABN1RmZQa04bcvgvNQMWqqg0ZfkKqUtY6xtVD0jw0eOk8tTxK5a23hw6HMcXNWHOKZjrAafMe7DzuYheLq2qSg7my3t4vCFvirk5EpvDB3uBr-pQl8ldMF3NMQOY5UOKeOYrslFb3cJb37znKyen1aLV7p8f3lbPC6pEyAz5bbWSutOAyrkulFcuVZwxbVCaJnowTnbyL5vm1q3DgEacEIyiwzsmok5uTut3cfwOWHKZhum6MtFI5hQNRcSdFHxk8rFkFLE3uzjMJb_DTBzdNScHDXFUfPjqFEFEicoFbHfYPxb_Q_1DQZ_ejA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037523418</pqid></control><display><type>article</type><title>Structured barycentric forms for interpolation-based data-driven reduced modeling of second-order systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gosea, Ion Victor ; Gugercin, Serkan ; Werner, Steffen W. R.</creator><creatorcontrib>Gosea, Ion Victor ; Gugercin, Serkan ; Werner, Steffen W. R.</creatorcontrib><description>An essential tool in data-driven modeling of dynamical systems from frequency response measurements is the barycentric form of the underlying rational transfer function. In this work, we propose structured barycentric forms for modeling dynamical systems with second-order time derivatives using their frequency domain input-output data. By imposing a set of interpolation conditions, the systems’ transfer functions are rewritten in different barycentric forms using different parametrizations. Loewner-like algorithms are developed for the explicit computation of second-order systems from data based on the developed barycentric forms. Numerical experiments show the performance of these new structured data-driven modeling methods compared to other interpolation-based data-driven modeling techniques from the literature.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-024-10118-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Dynamical systems ; Frequency response ; Interpolation ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; MORe 2022 ; Structured data ; Transfer functions ; Visualization</subject><ispartof>Advances in computational mathematics, 2024-04, Vol.50 (2), Article 26</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-2a58788d81e7e286727c9327287e1903f1cca64ff96589ce1161c340ae01ab03</cites><orcidid>0000-0003-4564-5999 ; 0000-0003-3580-4116 ; 0000-0003-1667-4862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10444-024-10118-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10444-024-10118-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Gosea, Ion Victor</creatorcontrib><creatorcontrib>Gugercin, Serkan</creatorcontrib><creatorcontrib>Werner, Steffen W. R.</creatorcontrib><title>Structured barycentric forms for interpolation-based data-driven reduced modeling of second-order systems</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>An essential tool in data-driven modeling of dynamical systems from frequency response measurements is the barycentric form of the underlying rational transfer function. In this work, we propose structured barycentric forms for modeling dynamical systems with second-order time derivatives using their frequency domain input-output data. By imposing a set of interpolation conditions, the systems’ transfer functions are rewritten in different barycentric forms using different parametrizations. Loewner-like algorithms are developed for the explicit computation of second-order systems from data based on the developed barycentric forms. Numerical experiments show the performance of these new structured data-driven modeling methods compared to other interpolation-based data-driven modeling techniques from the literature.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Dynamical systems</subject><subject>Frequency response</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>MORe 2022</subject><subject>Structured data</subject><subject>Transfer functions</subject><subject>Visualization</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52gmyW6yRyl-QcGDvYc0O1u2dJOaZIX-e1MrePMyM8y8zwzzEnIL7B4YUw8JmJSSMi4pMABN1RmZQa04bcvgvNQMWqqg0ZfkKqUtY6xtVD0jw0eOk8tTxK5a23hw6HMcXNWHOKZjrAafMe7DzuYheLq2qSg7my3t4vCFvirk5EpvDB3uBr-pQl8ldMF3NMQOY5UOKeOYrslFb3cJb37znKyen1aLV7p8f3lbPC6pEyAz5bbWSutOAyrkulFcuVZwxbVCaJnowTnbyL5vm1q3DgEacEIyiwzsmok5uTut3cfwOWHKZhum6MtFI5hQNRcSdFHxk8rFkFLE3uzjMJb_DTBzdNScHDXFUfPjqFEFEicoFbHfYPxb_Q_1DQZ_ejA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Gosea, Ion Victor</creator><creator>Gugercin, Serkan</creator><creator>Werner, Steffen W. R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4564-5999</orcidid><orcidid>https://orcid.org/0000-0003-3580-4116</orcidid><orcidid>https://orcid.org/0000-0003-1667-4862</orcidid></search><sort><creationdate>20240401</creationdate><title>Structured barycentric forms for interpolation-based data-driven reduced modeling of second-order systems</title><author>Gosea, Ion Victor ; Gugercin, Serkan ; Werner, Steffen W. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-2a58788d81e7e286727c9327287e1903f1cca64ff96589ce1161c340ae01ab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Dynamical systems</topic><topic>Frequency response</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>MORe 2022</topic><topic>Structured data</topic><topic>Transfer functions</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gosea, Ion Victor</creatorcontrib><creatorcontrib>Gugercin, Serkan</creatorcontrib><creatorcontrib>Werner, Steffen W. R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gosea, Ion Victor</au><au>Gugercin, Serkan</au><au>Werner, Steffen W. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structured barycentric forms for interpolation-based data-driven reduced modeling of second-order systems</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>50</volume><issue>2</issue><artnum>26</artnum><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>An essential tool in data-driven modeling of dynamical systems from frequency response measurements is the barycentric form of the underlying rational transfer function. In this work, we propose structured barycentric forms for modeling dynamical systems with second-order time derivatives using their frequency domain input-output data. By imposing a set of interpolation conditions, the systems’ transfer functions are rewritten in different barycentric forms using different parametrizations. Loewner-like algorithms are developed for the explicit computation of second-order systems from data based on the developed barycentric forms. Numerical experiments show the performance of these new structured data-driven modeling methods compared to other interpolation-based data-driven modeling techniques from the literature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10444-024-10118-7</doi><orcidid>https://orcid.org/0000-0003-4564-5999</orcidid><orcidid>https://orcid.org/0000-0003-3580-4116</orcidid><orcidid>https://orcid.org/0000-0003-1667-4862</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1019-7168
ispartof Advances in computational mathematics, 2024-04, Vol.50 (2), Article 26
issn 1019-7168
1572-9044
language eng
recordid cdi_proquest_journals_3037523418
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Dynamical systems
Frequency response
Interpolation
Mathematical analysis
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
MORe 2022
Structured data
Transfer functions
Visualization
title Structured barycentric forms for interpolation-based data-driven reduced modeling of second-order systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structured%20barycentric%20forms%20for%20interpolation-based%20data-driven%20reduced%20modeling%20of%20second-order%20systems&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Gosea,%20Ion%20Victor&rft.date=2024-04-01&rft.volume=50&rft.issue=2&rft.artnum=26&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-024-10118-7&rft_dat=%3Cproquest_cross%3E3037523418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037523418&rft_id=info:pmid/&rfr_iscdi=true